Skip to main content

StreetDrone urges more emphasis on C/AV hardware 

A greater reliance is needed on the contribution hardware can make towards safety within autonomous vehicles (AVs), according to a report by StreetDrone.
By David Arminas April 15, 2020 Read time: 2 mins
StreetDrone's report draws on experience of urban C/AV trials (© Akarat Phasura | Dreamstime.com)

The company, a maker of hardware and software, said the purpose of the Putting Safety First in Autonomous Vehicles report is to make an experience-based contribution to the safety debate within the connected and autonomous vehicle (C/AV) industry.

StreetDrone’s 30-page report – available as a free download – is based on the company’s experience in operating AV trials in heavily populated urban environments, explained Mike Potts, chief executive of StreetDrone. 

This experience spans the full spectrum of AV disciplines, from hardware and mechanical design through to artificial intelligence and software, as well as insight into city centre public highway trials.

“For an organisation focused on zone 1 urban trials, we have necessarily been safety-led, so our report encapsulates much of this knowledge,” said Potts. 

“Importantly… we propose a set of rules for the automotive safety factors that address what we consider to be a systemic oversight across the industry of these vital hardware considerations.”

The report also discusses the definition of a safe operating environment, minimum operating standards for safety drivers and a set of open data protocols for effective error tracking and rectification.

StreetDrone, based in Oxford, UK, says it was the first business in Europe to run a public road autonomous trial using open-source self-driving software. 

StreetDrone’s own hardware platforms range from the L7e class Renault Twizy heavy quadricycle to the flexible Nissan eNV200, which comes in taxi, delivery van or 7-seater passenger variants. 

The firm says they all benefit from autonomous-ready technology conversion which includes a proprietary control system that works in parallel with the vehicle’s original control and safety systems in order that all of the safety validation undertaken by the carmaker is maintained.

The StreetDrone platform approach operates upstream of all of these systems and leaves them functionally intact, rather than reverse-engineering or ‘hacking’ existing vehicle control system capabilities, like lane-keeping and power steering.

For more information on companies in this article

Related Content

  • 'Significant and universal decline' in walking in the US: StreetLight Data
    February 16, 2024
    Walking has declined over the last three years in the US – yet pedestrian fatalities have been rising. Adam Hill looks at new research from StreetLight Data to find out why this is happening
  • Swarco Navigates Future of Urban Mobility: Solutions for Smarter Cities
    April 28, 2025

     

    Urban mobility faces unprecedented challenges — rising congestion, environmental pressures, and the urgent need for efficient, inclusive transport systems. How can cities respond? During the Congress, industry leaders will explore actionable solutions, with Swarco at the forefront of these critical discussions.

  • ITS innovations – a change for the better?
    May 5, 2016
    Josef Czako takes a look at what the future developments may hold for both the transport sector and society. As the dust of the 2015 World Congress in Bordeaux settles, we can begin to see more clearly some of the most important future innovations in ITS are starting to be linked together: mobility as a service (MaaS), mobility pricing and autonomous vehicles. They all are based on global trends, like digitalisation, automation and servitisation.
  • Michigan researchers show how easy it is to hack trucks
    August 5, 2016
    Cybersecurity researchers have already shown how easy it is to hack a Jeep Cherokee and take control of its brakes and steering, resulting in a recall for the vulnerability to be corrected. At the Usenix Workshop on Offensive Technologies conference next week, a group of University of Michigan researchers plan to demonstrate how trucks, which have also begun adding similar electronic control system, can be vulnerable to hacking. They plan to show how the openness of the SAE J1939 standard used across