Skip to main content

StreetDrone urges more emphasis on C/AV hardware 

A greater reliance is needed on the contribution hardware can make towards safety within autonomous vehicles (AVs), according to a report by StreetDrone.
By David Arminas April 15, 2020 Read time: 2 mins
StreetDrone's report draws on experience of urban C/AV trials (© Akarat Phasura | Dreamstime.com)

The company, a maker of hardware and software, said the purpose of the Putting Safety First in Autonomous Vehicles report is to make an experience-based contribution to the safety debate within the connected and autonomous vehicle (C/AV) industry.

StreetDrone’s 30-page report – available as a free download – is based on the company’s experience in operating AV trials in heavily populated urban environments, explained Mike Potts, chief executive of StreetDrone. 

This experience spans the full spectrum of AV disciplines, from hardware and mechanical design through to artificial intelligence and software, as well as insight into city centre public highway trials.

“For an organisation focused on zone 1 urban trials, we have necessarily been safety-led, so our report encapsulates much of this knowledge,” said Potts. 

“Importantly… we propose a set of rules for the automotive safety factors that address what we consider to be a systemic oversight across the industry of these vital hardware considerations.”

The report also discusses the definition of a safe operating environment, minimum operating standards for safety drivers and a set of open data protocols for effective error tracking and rectification.

StreetDrone, based in Oxford, UK, says it was the first business in Europe to run a public road autonomous trial using open-source self-driving software. 

StreetDrone’s own hardware platforms range from the L7e class Renault Twizy heavy quadricycle to the flexible Nissan eNV200, which comes in taxi, delivery van or 7-seater passenger variants. 

The firm says they all benefit from autonomous-ready technology conversion which includes a proprietary control system that works in parallel with the vehicle’s original control and safety systems in order that all of the safety validation undertaken by the carmaker is maintained.

The StreetDrone platform approach operates upstream of all of these systems and leaves them functionally intact, rather than reverse-engineering or ‘hacking’ existing vehicle control system capabilities, like lane-keeping and power steering.

Related Content

  • Ground-breaking neutral V2X platform for C-ITS
    June 7, 2021
    Monotch's TLEX can be used by multiple stakeholders across C-ITS ecosystem
  • Sorting myth from reality in vehicle automation
    June 2, 2016
    Bob Denaro looks beyond the hype surrounding autonomous vehicles to the challenges that still need to be overcome. Automated vehicles (AVs) may be the perfect storm – in a positive way - with the automobile manufacturers, the government and consumers all embracing the emergence of a transformational new technology and product.
  • Managed lane operators: meet the CAV pioneers
    June 26, 2018
    There is some controversy over the testing of connected and autonomous vehicles – but Robert Deans of Transurban North America explains how managed lanes could be vital in the development of CAVs, benefiting everyone. Managed lane operators have the opportunity to establish themselves as leaders in the testing and roll-out of connected and automated vehicles (CAVs), assisting and accelerating the transition of CAVs onto road networks to deliver economic and safety benefits. Managed lane facilities
  • Nissan to lead human driving style AV project in the UK
    February 2, 2018
    Nissan’s European Technical Centre will lead a 30-month Autonomous Vehicle trial on UK country roads, high speed roundabouts, A-Roads and motorways with live traffic and different environmental conditions. Called the HumanDrive project, it will also emulate a natural human driving style with the intention of providing an enhanced experience for its occupants. The artificial driver model that controls perception and decision making will pilot the vehicle, and will be developed using artificial intelligence