Skip to main content

StreetDrone urges more emphasis on C/AV hardware 

A greater reliance is needed on the contribution hardware can make towards safety within autonomous vehicles (AVs), according to a report by StreetDrone.
By David Arminas April 15, 2020 Read time: 2 mins
StreetDrone's report draws on experience of urban C/AV trials (© Akarat Phasura | Dreamstime.com)

The company, a maker of hardware and software, said the purpose of the Putting Safety First in Autonomous Vehicles report is to make an experience-based contribution to the safety debate within the connected and autonomous vehicle (C/AV) industry.

StreetDrone’s 30-page report – available as a free download – is based on the company’s experience in operating AV trials in heavily populated urban environments, explained Mike Potts, chief executive of StreetDrone. 

This experience spans the full spectrum of AV disciplines, from hardware and mechanical design through to artificial intelligence and software, as well as insight into city centre public highway trials.

“For an organisation focused on zone 1 urban trials, we have necessarily been safety-led, so our report encapsulates much of this knowledge,” said Potts. 

“Importantly… we propose a set of rules for the automotive safety factors that address what we consider to be a systemic oversight across the industry of these vital hardware considerations.”

The report also discusses the definition of a safe operating environment, minimum operating standards for safety drivers and a set of open data protocols for effective error tracking and rectification.

StreetDrone, based in Oxford, UK, says it was the first business in Europe to run a public road autonomous trial using open-source self-driving software. 

StreetDrone’s own hardware platforms range from the L7e class Renault Twizy heavy quadricycle to the flexible Nissan eNV200, which comes in taxi, delivery van or 7-seater passenger variants. 

The firm says they all benefit from autonomous-ready technology conversion which includes a proprietary control system that works in parallel with the vehicle’s original control and safety systems in order that all of the safety validation undertaken by the carmaker is maintained.

The StreetDrone platform approach operates upstream of all of these systems and leaves them functionally intact, rather than reverse-engineering or ‘hacking’ existing vehicle control system capabilities, like lane-keeping and power steering.

For more information on companies in this article

Related Content

  • Just Zip it! Lindsay takes to the road
    October 10, 2018
    Greater vehicle connectivity is going to have huge implications for traffic management. David Arminas climbed aboard a Lindsay Road Zipper to see what this might mean in future As vice president of barrier specialist QMB Canada, Marc-Andre Seguin is sanguine about the future for moveable barriers. On the one hand, it looks good. The oft-stated advantage of moveable barriers is that the systems are cheaper to install than adding a lane or two to a highway or bridge. Directional changes to lanes can boost
  • EU aims to turn ITS theory into practice
    May 18, 2016
    Gareth Horton explains how the European Commission’s Transport Research and Innovation Portal can help expedite research and turn theory into practice. Over the next few years Europe’s transport systems face a number of challenges, such as improving urban mobility while at the same time protecting population health and accommodating the accessibility needs of an ageing but active population.
  • Use of AI, unlocking innovation - and new political leaders: our experts pick out 2025's key drivers
    December 30, 2024
    Is predicting the future doomed to failure? Not when ITS International's experts are on the case...
  • Guide on how to improve bike network connectivity with modest changes
    June 1, 2012
    The Mineta Transportation Institute has released a peer-reviewed research report, Low-Stress Bicycling and Network Connectivity. As part of its work, the research team created measures of low-stress bicycle route connectivity that can be used to evaluate and guide bicycle network planning. As a result, the team proposed a set of criteria by which road segments can be classified into four levels of traffic stress (LTS). The report includes a sample case study in which every street in San Jose, California, is