Skip to main content

Spark EV launches telematics solution to remove range anxiety for EV fleet operators

November 23, 2017 Read time: 2 mins

Spark EV has launched its new artificial intelligence-based journey prediction telematics solution in Cambridge UK to reassure fleet managers moving to electric vehicles (EVs) that they will be able to schedule and complete jobs without running out of charge. It is designed with the intention of reducing range anxiety for managers and increasing the number of potential journeys by 2.8 per day.  


The solution uses a combination of sensor technology, cloud-based machine learning analysis software and a smartphone app to analyse live driver, vehicle and other data sources such as the weather and congestion. It then uses AI software algorithms to increase the accuracy of journey predictions for EVs. Using machine learning, Spark EV automatically updates predictions after each journey to continually improve efficiency.

Drivers and fleet managers enter their journey through the Spark EV app, web interface, or their existing fleet management software, and it advises whether they will be able to complete it, based on live data, previous trips and ChargePoint locations. The solution also allows managers to add extra journeys or drop-offs to EV routes, based on their remaining capacity.

Available as a monthly subscription model, Spark EV integrates with existing fleet management/scheduling systems through its open API, or can be used as a standalone solution for smaller fleets and can be installed with all current EVs.

Justin Ott, chief executive officer, Spark EV Technology, said: “Fleet managers understand that the future increasingly revolves around electric vehicles, due to new legislation coming into force around the world, a move away from diesel and rapid growth in EV sales. However, existing methods of predicting range between charges are not accurate enough for fleet use, leading to range anxiety and a consequent drop in productivity as managers cut back the number of journeys to avoid potentially running out of power.”

Related Content

  • May 18, 2018
    New ANPR solutions overcome variables
    The sheer range of variables makes it difficult to find a single algorithm to ensure a 100% standard of ANPR. David Crawford investigates new processing technology. Automatic number plate recognition (ANPR), using optical character recognition and image-processing to identify vehicles, plays key roles in traffic monitoring and law enforcement, access and parking control, electronic toll collection, vehicle security and crime deterrence. Overall, system performance is well rated, with high levels of
  • May 3, 2019
    Gearing up for the global electric vehicle revolution
    As transport, communications and energy networks become inextricably linked, policy makers are recognising the implications for our built environment – and the growing electric vehicle market will have a major impact on the world’s infrastructure, says Rolton Group’s Chris Evans
  • August 10, 2016
    Calculating the cost of stellar solutions
    The increasing availability and accuracy of global navigation satellite system (GNSS) is opening up low-cost options in many areas as David Crawford finds out. Boosting commercialisation of European global navigation satellite system (EGNSS) technologies for ITS initially depends heavily on demonstrating competitive and cost/benefit advantages obtainable from the deployment of EGNOS (the current European Geostationary Navigation Overlay Service), and ultimately the EU’s Galileo constellation (see box). So,
  • January 24, 2024
    TRB 2024 challenge spurs smart transportation innovation
    The Center for Urban Informatics and Progress at UTC, Amazon Web Services, the National Science Foundation, the City of Chattanooga and ITS America sponsored the Transportation Forecasting Competition at TRB 2024: and the challenge threw up some fascinating projects