Skip to main content

Spark EV launches telematics solution to remove range anxiety for EV fleet operators

November 23, 2017 Read time: 2 mins

Spark EV has launched its new artificial intelligence-based journey prediction telematics solution in Cambridge UK to reassure fleet managers moving to electric vehicles (EVs) that they will be able to schedule and complete jobs without running out of charge. It is designed with the intention of reducing range anxiety for managers and increasing the number of potential journeys by 2.8 per day.  


The solution uses a combination of sensor technology, cloud-based machine learning analysis software and a smartphone app to analyse live driver, vehicle and other data sources such as the weather and congestion. It then uses AI software algorithms to increase the accuracy of journey predictions for EVs. Using machine learning, Spark EV automatically updates predictions after each journey to continually improve efficiency.

Drivers and fleet managers enter their journey through the Spark EV app, web interface, or their existing fleet management software, and it advises whether they will be able to complete it, based on live data, previous trips and ChargePoint locations. The solution also allows managers to add extra journeys or drop-offs to EV routes, based on their remaining capacity.

Available as a monthly subscription model, Spark EV integrates with existing fleet management/scheduling systems through its open API, or can be used as a standalone solution for smaller fleets and can be installed with all current EVs.

Justin Ott, chief executive officer, Spark EV Technology, said: “Fleet managers understand that the future increasingly revolves around electric vehicles, due to new legislation coming into force around the world, a move away from diesel and rapid growth in EV sales. However, existing methods of predicting range between charges are not accurate enough for fleet use, leading to range anxiety and a consequent drop in productivity as managers cut back the number of journeys to avoid potentially running out of power.”

Related Content

  • December 8, 2014
    Sensor solutions cuts maintenance and emissions
    The new raft of sensor technology can provide cost savings as well as additional functionality, as David Crawford discovers. Austria’s third-largest city, Linz, with a population of around 200,000, is recording substantial savings in its urban tram network within 18 months of introducing a new, high-technology approach to its public transport management. Tram, bus and trolleybus operator Linz Linien forms part of city utilities management company Linz AG, which has been carrying out a wide-ranging Smart Cit
  • February 25, 2016
    System predicts train delays and informs response
    David Crawford looks into the near-term future for Stockholm’s rail commuters. Swedish rail operator Stockholmståg, which runs commuter services in and around the country’s capital, is claiming a world first with the introduction of its automated Pendelprognosen (commuter prognosis) service. Developed to enable the prediction of delays as much as two hours before they are likely to occur, this offers the operator the scope for much earlier remedial action than previously - for example by filling in the expe
  • May 22, 2015
    Advanced telematics and integration to revolutionise global connected car market
    Advanced infotainment systems, over-the-air (OTA) updates, big data analytics, mobility services and in-car security are key technologies that will shape the global connected car market in 2015. Human machine interface (HMI) input and output solutions, as well as, heads up display (HUD) are set to take centre stage. However, car makers must create consumer-centric HMI solutions that will strike a balance between reducing driver distraction and meeting consumer need for connected services. New analysis f
  • November 14, 2018
    Aimsun takes part in driver data study to improve C/AVs
    Aimsun is taking part in a UK study which is using human driver data to help improve the performance and acceptability of connected and autonomous vehicles (C/AVs). The one-year project, Learning through Ambient Driving Styles for Autonomous Vehicles (LAMBDA-V), will also look at how driver behaviour can be analysed and used to accelerate the adoption of C/AVs. Aimsun says new rules for safer and more efficient driving behaviour could be created from existing vehicles, based on road laws and on how h