Skip to main content

GTT bolsters solutions with GNSS

Opticom solutions cover transit signal priority and traffic sensing technology
By Ben Spencer January 7, 2021 Read time: 2 mins
GTT says GNSS gives customers across to multiple satellite networks (© Andrey Armyagov | Dreamstime.com)

Global Traffic Technologies (GTT) has added the Global Navigation Satellites System (GNSS) to its Opticom solutions to improve the reliability of connected vehicle services. 

GTT says this collection of satellites transmits positioning and timing data to GNSS receivers, which use this data to determine location.

Connected vehicle applications rely on GPS to determine the real-time location of vehicles.

GTT describes GPS as a single system that employs 31 satellites compared to GNSS which utilises around the world, including GPS (America), Glonass (Russia), Galileo (European Union) and BeiDou (China).

According to GTT, adding GNSS will enable more reliable priority control in dense urban areas with obstructions such as bridges, tunnels and tall buildings.

It will also reduce performance issues that can diminish priority control's effectiveness by helping ensure the correct intersection receives the request for a green light as priority vehicles approach intersections, the company adds. 

GTT insists better location services will minimise disruptions to traffic and help bus drivers and light rail train conductors navigate dense urban areas in safer and faster.

Ravi Shah, GTT vice president of product development, says: “It’s well-documented that urban canyons and multipath effects can negatively impact the accuracy and overall performance of GPS-based locating."

"The advantage of adding GNSS is that it gives our customers access to multiple satellite networks, thereby reducing interference and increasing accuracy while providing reliable redundancy and availability.”

Despite this, the company recognises that communication to these satellites can be lost temporarily in areas with tall buildings, tunnels or multi-level roads. 

GTT has therefore added the ability to more effectively determine vehicle position in these areas with software-based dead reckoning. 

If satellite communication is lost, dead reckoning is expected to calculate a moving vehicle's position by estimating its direction and distance travelled from its last known geo-location.

GTT’s software-based dead reckoning solution functions with sensors built into the Opticom devices, with no additional vehicle wiring required.

Chad Mack, GTT’s director of product management, says: “Opticom, like other connected-vehicle applications, relies on accurate vehicle position to deliver high performance solutions.”

GTT says on its website that its Opticom solutions can provide intelligent transit signal priority for public transit and flexible traffic sensing technology for a variety of traffic applications. 

For more information on companies in this article

Related Content

  • Smartphone solution for parking performance
    March 31, 2017
    Automated parking offers optimised space utilisation and fewer damage complaints as David Crawford discovers. As cars become smarter, technology designed to make parking them more straightforward is developing in parallel. In turn, it is becoming clear that the places where vehicles spend much of their time will need to respond – more comprehensively than by supporting established aids such as smartphone-based parking location and reservation, or payment for time used.
  • Cepton monitors Cape Town lanes 
    March 4, 2022
    Fibre's Lidar-enabled systems will help gather real-time usage data in South African city
  • Bulgarian city implements traffic signal priority system
    October 26, 2016
    Global Traffic Technologies (GTT) has implemented traffic signal priority systems (TSP) at 32 intersections in the Bulgarian city of Burgas, as part of the Burgas Integrated Urban Transport Project. The Opticom TSP system allows public transportation vehicles to be given priority signals at traffic intersections. The technology is also fitted to 77 public transport buses in the city, which ensures that when any of them approaches one of the 32 equipped intersections, the system sends a request from the
  • Reducing detection costs benefits intersection management
    February 3, 2012
    The continuing, favourable performance-versus-cost situation concerning detection and monitoring technologies is driving the proliferation of intelligence across road networks. The effective and safe management of intersections is a focus for network operators and systems manufacturers alike. The most complicated of road environments, and statistically among the least safe, intersections enjoy particular emphasis in longer-term work on cooperative infrastructure solutions. However there are current developm