Skip to main content

Cars reinvented: huge new opportunities and dangers, says IDTechEx

The new IDTechEx report, Electric Car Technology and Forecasts 2017-2027 finds that the biggest change in cars for one hundred years is now starting. It is driven by totally new requirements and capabilities. They will cause huge new businesses to appear but some giants currently making cars and their parts will spectacularly go bankrupt. Cities will ban private cars but encourage cars as autonomous taxis and rental vehicles. Already 65 per cent of cars in China are bought by businesses. The Japanese wa
December 2, 2016 Read time: 4 mins
The new 6582 IDTechEx report, Electric Car Technology and Forecasts 2017-2027 finds that the biggest change in cars for one hundred years is now starting. It is driven by totally new requirements and capabilities. They will cause huge new businesses to appear but some giants currently making cars and their parts will spectacularly go bankrupt. Cities will ban private cars but encourage cars as autonomous taxis and rental vehicles. Already 65 per cent of cars in China are bought by businesses.

The Japanese want the car to be part of the hydrogen economy and a source of power when the next earthquakes and tsunamis hit. The emerging countries want car-like vehicles, mainly as taxis, that are one tenth of the cost and never refuel because the ample sunshine and wind will be grabbed and stored by the vehicle. There is even work on getting electricity from tyres.
 
The report has a complete chapter on cars in China, the country that buys the most, has some of the lowest costs and leapfrogging innovation but completely different market drivers with the government controlling supply, demand and regulation. Even Chinese manufacturers do not know what comes next, some of which is naked protectionism and some of which, like the recent reintroduction of HEV financial support, a surprise for other reasons.
 
For cars, the mechanical world of cogs, axles, pistons and brakes is becoming one of power electronics, complex electric machine systems, batteries and their successors. Integration is the name of the game with components-in-a-box becoming smart wheels and smart inside and outside bodywork and seating. The dashboard and instruments will be made as one piece of formed composite with one company even planning highest-efficiency solar being the surface of this integrated dashboard to drive internal electrics. That featherweight solar layer was previously only affordable on satellites but its cost is promised to drop by one thousand.
 
Electric Car Technology and Forecasts 2017-2027 tells us to think of optics, electrics, electronics and electrics combining in "structural electronics" to make the traditional component maker and assembler suddenly feel unwanted while there is a shortage of the new skills and manufacturing facilities. Smart wheel systems could mean more space, less weight and better steering and performance in slippery conditions. Key enabling technologies rapidly move to batteries, power electronics and often multiple traction motors. Then comes very different energy storage, power electronics (now including many new forms energy harvesting including regeneration), signal electronics and reversing electric machines - often several per car and sometimes with the motor electronics costing more than the motor, 1686 Toyota tell us. Add software and services: big time. This report carefully assesses where and when, winners and losers.
 
The report times peak car, peak HEV, peak PHEV and peak lead acid battery. For example, 838 Nissan in Japan IDTechEx they have no plans to remove the lead acid battery from their pure electric cars but others are acting differently.
 
The report finds a huge market emerging for the cheapest, easiest way of converting existing production of cars to keep them legal as new global warming laws bite. This is the 48V mild hybrid: it will also peak in the next fifteen years but, before that, it will transmogrify into a hugely popular form of electric vehicle by becoming capable of several pure electric modes with engine off. The 1685 Mercedes broad move to 48V MH in 2017 is only part of this story.
 
Electric Car Technology and Forecasts 2017-2027 takes a sober look at the detail reveals surprising aspects not popularly reported. For example, 1674 Fiat 1958 Chrysler is a laggard in EVs but they convinced us they are a leader in 48V MH. Why has Toyota just done a U turn on pure electric cars? Timing is all in this game.
 
The analysis reveals when energy independent vehicles (EIVs) become significant, not least as cars. It exposes the world of LiDAR, radar, cameras, software and so on for autonomy with their relative importance changing rapidly and claims the price trends are dramatic. It asks if there a hare and tortoise story here with 8534 Tesla terrifying the industry by becoming the Apple of automotive but acquiring major quality and financial challenges. 994 Volkswagen and 2069 Daimler have become ambivalent about fuel cell cars. Some say they are the end game, 1684 Hyundai says they are an important option and yet others call them fool cells. Who is right? Will the Chinese flood the world with half-price basic electric cars? When?
 
It is very important that readers escape the evangelism of so many commentators and access the balanced analysis of companies such as IDTechEx. For example, it breaks all the rules of safe manufacturing to radically change your product while increasing production one hundredfold yet we show how that is exactly what is happening with the lithium-ion batteries. Battery fires and explosions are ongoing but some car and battery makers have a superb record.

For more information on companies in this article

Related Content

  • Changing perceptions and going green with ITS
    May 26, 2022
    Entrants to the ITS (UK) Essay Award were asked to write about innovative application of ITS solutions to achieve decarbonisation goals. First-year apprentice Leora Wilson, who studies at Leeds College of Building as part of her apprenticeship with Mott MacDonald, won the competition with this entry…
  • Dynamic charging boosts electric vehicles’ potential
    December 16, 2014
    With an increasing need to use electric vehicles in city centres to reduce pollution, David Crawford looks at various solutions to power delivery. The UN’s September 2014 Climate Summit has added fresh momentum to the drive to increase urban electric vehicle (EV) takeup. It has launched the Urban Electric Mobility Initiative, which wants to see EVs accounting for 30% of all urban travel by 2030, and make cities worldwide more friendly to their use. Encouragingly, the plan is being well supported by commerci
  • UK not prepared for growth in EV use, think tank warns
    April 25, 2017
    A new report by independent think tank the Green Alliance claims that the UK government will have problems if energy systems are not improved to take account of developments in solar panels, onshore wind, electric vehicles (EVs) and battery storage. It says people are increasingly choosing to be energy owners and are able to take back at least some control over energy production. The report states, “Politicians are arguing over whether or not to subsidise renewables without seeing how technology has changed
  • Rethink required to reduce road transport’s environmental impact
    March 15, 2016
    Against a background of a renewed focus on limiting the rise in average temperatures, Colin Sowman looks at a project that is taking a holistic approach to the environmental impact and safety of road transport. At the COP21 meeting in Paris last December, almost 200 nations agreed to reduce greenhouse gas emissions in an effort to keep the rise in global temperatures to 2°C) compared with pre-industrial levels. The transportation sector is a major contributor to the production of CO2, one of the main green