Skip to main content

Aimsun helps TfL retain detail in traffic modelling

Transport for London (TfL) has selected Transport Simulation Systems’ Aimsun modelling software following a lengthy evaluation. With London’s population predicted to reach 10million by 2030, the authority needed to increase its modelled area by a factor of 10 to more than 2,300km2 along with improved cyclist, pedestrian and air quality predictions. For a market assessment it divided its modelling requirements into three categories: tactical - for city wide policy evaluation, micro-simulation for modelli
September 25, 2015 Read time: 2 mins
1466 Transport for London (TfL) has selected 2195 Transport Simulation Systems’ Aimsun modelling software following a lengthy evaluation. With London’s population predicted to reach 10million by 2030, the authority needed to increase its modelled area by a factor of 10 to more than 2,300km2 along with improved cyclist, pedestrian and air quality predictions.

For a market assessment it divided its modelling requirements into three categories: tactical - for city wide policy evaluation, micro-simulation for modelling London’s 23 main traffic corridors, and optimisation of the junction/network with some 6,300 signalised junctions.  3D visualisation was also specified.

It evaluated three systems in each category by providing potential suppliers with data regarding a particular area and setting out up to 70 outcome requirements for each level. Interconnection between the proposed systems in the various layers was also evaluated.

TfL’s lead modelling specialist Vladimir Vorotovic said 70% of the score weighting related to the technical capability and service provision with the remainder being financial considerations.

Beyond predicting travel times, the new systems had to accommodate an expected tripling in the number of cyclists, enhanced emissions modelling (including 3D evaluation of building/canyons) and linking the outputs to the other layers. The aim of the cross linking is to retain the individual vehicle movements detail used in junction modelling at the corridor level (using Aimsun hybrid simulation) along with 3D visualisation - and to inform the tactical model.

According to Vorotovic, once implemented the system will enable changes made at individual junctions to be evaluated on a corridor level or even across the entire modelled area. It will also allow the effects of policy changes to be modelled at street level on individual junctions.

Related Content

  • February 2, 2012
    Land of ITS opportunities
    Geographically, Russia, the largest country in the world, is vast. So too are the opportunities for the global ITS community, which is why ITS Russia has been actively promoting the country and the opportunities that abound there. ITS Russia is reaching out around the world. In October, at the 17th ITS World Congress in Busan, South Korea, a cooperative agreement was signed with ITS America to promote and strengthen research, educational, and commercial cooperation in the ITS field among the two association
  • February 6, 2012
    Land of ITS opportunities
    Geographically, Russia, the largest country in the world, is vast. So too are the opportunities for the global ITS community, which is why ITS Russia has been actively promoting the country and the opportunities that abound there
  • June 28, 2017
    LowCVP Conference highlights policies needed to tackle pollution and climate challenges
    With road transport in the spotlight as a key to tackling both air quality and climate challenges, the Low Carbon Vehicle Partnership is launching a new multi-faceted work programme which aims to speed the transformation to cleaner vehicles and fuels.
  • May 2, 2017
    City of Seattle implements SCOOT adaptive traffic management
    Seattle Department of Transportation (SDOT) has implemented a new adaptive traffic control system at 32 intersections along Mercer Street between 3rd Ave W and I-5, which has been one of the city’s most congested corridors for over 40 years. Developed by the UK’s Transport Research Laboratory, the SCOOT (Split Cycle Offset Optimisation Technique) system coordinates the operation of the traffic signals in and around the corridor to help vehicles move more efficiently. SCOOT works in real-time to reduce delay