Skip to main content

Modelling could reduce traffic mayhem

A mathematical model that could significantly reduce traffic congestion by combining data from existing infrastructure, remote sensors, mobile devices and their communication systems has been developed by a research team from Australia’s Swinburne University of Technology. Swinburne‘s Congestion Breaker project utilises intelligent transport systems (ITS), a field of research that combines information and data from a range of sources for effective traffic control.
May 6, 2016 Read time: 2 mins

A mathematical model that could significantly reduce traffic congestion by combining data from existing infrastructure, remote sensors, mobile devices and their communication systems has been developed by a research team from Australia’s 5192 Swinburne University of Technology.

Swinburne‘s Congestion Breaker project utilises intelligent transport systems (ITS), a field of research that combines information and data from a range of sources for effective traffic control.

Led by Professor Hai L. Vu and developed in collaboration with 4728 VicRoads, the government body responsible for road management, through an Australian Research Council (ARC) Future Fellowships grant, the Congestion Breaker project has developed a mathematical approach that uses limited and incomplete data from existing operational traffic management systems to build a predictive control framework to minimise congestion.

The model optimises the traffic flows over a finite period, taking into account the short-term demand and traffic dynamic within links of the network. The resulting algorithm explicitly considers any spillback due to a queue built-up and travel time on the road between intersections and is capable of producing systems which would reduce congestion significantly.

Further innovative distributed control mechanism created in this project is inspired by research developed for packet scheduling in wireless networks. It can handle a large network containing thousands of sensors and actuators in real time.

The outcome is a comprehensive traffic management framework with computational flexibility accurate enough to reflect real urban traffic networks. It produces a scalable algorithm that can be integrated with current operating traffic management systems to reduce congestion and make better use of the existing road network infrastructure

“Our novelty is in developing an integrated traffic control scheme that combines linear model predictive control with route guidance to manage urban traffic flows, and making it scalable for large networks,” says Vu.

The researchers say the model has potential industry impact as a state-of-the-art, integrated, efficient traffic network management system. It’s a smart, scalable and easily integrated solution.

“Similar pilot projects can be developed for many other cities around the world,” says Vu. “And there are many possibilities for commercial applications in Australia and overseas in terms of smart mobility, sustainable cities for growing populations, and its concentration in big cities.”

For more information on companies in this article

Related Content

  • Bringing the Internet of Mobility to life
    July 16, 2021
    As we chart our route to the ITS World Congress in Hamburg, a recent Ertico-ITS Europe webinar explored the future of connectivity including policy, infrastructure and security
  • Data crunching ‘can prevent cars crashing’
    March 25, 2013
    Having already cut traffic collisions resulting in injuries and deaths by nearly forty per cent in five years by analysing patterns from data it has collected, the city of Edmonton, Canada, is using predictive technologies to increase road safety even more. The city’s Office of Traffic Safety (OTS) has installed as many as 200 digital signs as just one element of an innovative traffic safety program that has dramatically reduced vehicle collisions in the Edmonton region since OTS launched in late 2006. Unde
  • Scaling up road safety analysis with Aimsun cloud simulation
    May 10, 2023
    Synthetic generation, execution, and analysis of thousands of road safety scenarios is exponentially more efficient and wider ranging than any methodology based on field data. Marcel Sala & Jordi Casas of Aimsun examine the benefits of cloud simulation for safety testing
  • Connected citizens boosts Boston’s traffic management
    March 30, 2017
    Data-derived traffic management is starting to show benefits as David Crawford discovers. The city of Boston has been facing growing congestion problems in its Seaport regeneration district, with the rate of commercial and residential growth threatening to overtake the capacity of the road network to respond.