Skip to main content

Modelling could reduce traffic mayhem

A mathematical model that could significantly reduce traffic congestion by combining data from existing infrastructure, remote sensors, mobile devices and their communication systems has been developed by a research team from Australia’s Swinburne University of Technology. Swinburne‘s Congestion Breaker project utilises intelligent transport systems (ITS), a field of research that combines information and data from a range of sources for effective traffic control.
May 6, 2016 Read time: 2 mins

A mathematical model that could significantly reduce traffic congestion by combining data from existing infrastructure, remote sensors, mobile devices and their communication systems has been developed by a research team from Australia’s 5192 Swinburne University of Technology.

Swinburne‘s Congestion Breaker project utilises intelligent transport systems (ITS), a field of research that combines information and data from a range of sources for effective traffic control.

Led by Professor Hai L. Vu and developed in collaboration with 4728 VicRoads, the government body responsible for road management, through an Australian Research Council (ARC) Future Fellowships grant, the Congestion Breaker project has developed a mathematical approach that uses limited and incomplete data from existing operational traffic management systems to build a predictive control framework to minimise congestion.

The model optimises the traffic flows over a finite period, taking into account the short-term demand and traffic dynamic within links of the network. The resulting algorithm explicitly considers any spillback due to a queue built-up and travel time on the road between intersections and is capable of producing systems which would reduce congestion significantly.

Further innovative distributed control mechanism created in this project is inspired by research developed for packet scheduling in wireless networks. It can handle a large network containing thousands of sensors and actuators in real time.

The outcome is a comprehensive traffic management framework with computational flexibility accurate enough to reflect real urban traffic networks. It produces a scalable algorithm that can be integrated with current operating traffic management systems to reduce congestion and make better use of the existing road network infrastructure

“Our novelty is in developing an integrated traffic control scheme that combines linear model predictive control with route guidance to manage urban traffic flows, and making it scalable for large networks,” says Vu.

The researchers say the model has potential industry impact as a state-of-the-art, integrated, efficient traffic network management system. It’s a smart, scalable and easily integrated solution.

“Similar pilot projects can be developed for many other cities around the world,” says Vu. “And there are many possibilities for commercial applications in Australia and overseas in terms of smart mobility, sustainable cities for growing populations, and its concentration in big cities.”

For more information on companies in this article

Related Content

  • Visionstream secures Australian motorways project
    February 11, 2013
    Visionstream Australia (Visionstream) is to deliver the Intelligent Transport System (ITS) and communications infrastructure for the Westgate Freeway Managed Motorway Project under the National Smart Managed Motorways Program. The US$21.5 million contract includes design and construction of the ITS system and an operations and maintenance component for two years. Under the contract, Visionstream will be undertaking the design, supply, installation and integration of ITS devices including lane use signs, va
  • Urban utility
    July 24, 2012
    Steve Lane, Commercial Director at Triteq, talks about the successful deployment of ZigBee in Barcelona where a low-cost wireless metropolitan network for location and citizen services was established. The project, he says, demonstrates ZigBee's effectiveness as an urban communications system solution ZigBee is based on the IEEE radio frequency standard 802.15.4 - 2006 for Wireless Personal Area Networks (WPAN), which provides a license-free radio frequency for a flexible, robust private wireless network. Z
  • ITS Australia supports funding proposal for industry research
    October 27, 2016
    ITS Australia has welcomed the transport industry’s final application to the Federal Government’s US$498 million (AU$653 million) Cooperative Research Centres (CRC) Program, which has been established to solve industry identified challenges through outcome-focused collaborative research partnerships. ITS Australia, the national body for the intelligent transport systems (ITS) industry, is a consortium member of iMOVE CRC, one of seven shortlisted applicants. With a focus on developing substantial imp
  • ITC provides agnostic traffic control software to Peachtree Corners
    September 26, 2023
    Intersection control specialist's 'Silicon Orchard' deployment is its first in the US