Skip to main content

Modelling could reduce traffic mayhem

A mathematical model that could significantly reduce traffic congestion by combining data from existing infrastructure, remote sensors, mobile devices and their communication systems has been developed by a research team from Australia’s Swinburne University of Technology. Swinburne‘s Congestion Breaker project utilises intelligent transport systems (ITS), a field of research that combines information and data from a range of sources for effective traffic control.
May 6, 2016 Read time: 2 mins

A mathematical model that could significantly reduce traffic congestion by combining data from existing infrastructure, remote sensors, mobile devices and their communication systems has been developed by a research team from Australia’s 5192 Swinburne University of Technology.

Swinburne‘s Congestion Breaker project utilises intelligent transport systems (ITS), a field of research that combines information and data from a range of sources for effective traffic control.

Led by Professor Hai L. Vu and developed in collaboration with 4728 VicRoads, the government body responsible for road management, through an Australian Research Council (ARC) Future Fellowships grant, the Congestion Breaker project has developed a mathematical approach that uses limited and incomplete data from existing operational traffic management systems to build a predictive control framework to minimise congestion.

The model optimises the traffic flows over a finite period, taking into account the short-term demand and traffic dynamic within links of the network. The resulting algorithm explicitly considers any spillback due to a queue built-up and travel time on the road between intersections and is capable of producing systems which would reduce congestion significantly.

Further innovative distributed control mechanism created in this project is inspired by research developed for packet scheduling in wireless networks. It can handle a large network containing thousands of sensors and actuators in real time.

The outcome is a comprehensive traffic management framework with computational flexibility accurate enough to reflect real urban traffic networks. It produces a scalable algorithm that can be integrated with current operating traffic management systems to reduce congestion and make better use of the existing road network infrastructure

“Our novelty is in developing an integrated traffic control scheme that combines linear model predictive control with route guidance to manage urban traffic flows, and making it scalable for large networks,” says Vu.

The researchers say the model has potential industry impact as a state-of-the-art, integrated, efficient traffic network management system. It’s a smart, scalable and easily integrated solution.

“Similar pilot projects can be developed for many other cities around the world,” says Vu. “And there are many possibilities for commercial applications in Australia and overseas in terms of smart mobility, sustainable cities for growing populations, and its concentration in big cities.”

For more information on companies in this article

Related Content

  • Data collection becoming a crowded market
    October 26, 2017
    New ways of gathering data can revolutionise traffic and travel management, so is the writing on the wall for the traditional methods? Jon Masters reports. There are two big industries that stand to be revolutionised by massive increases in data – healthcare and transportation, says Finlay Clarke, the UK managing director of the smartphone sat nav traffic app, Waze. “At present we’re really only at the start of how cities, in particular, will be transformed,” he says.
  • On the Edge with Verizon’s new real-time V2X platform
    June 11, 2025
    Solution allows vehicles to share data with each other, VRUs and infrastructure
  • Seoul sensors aid autonomous mobility
    January 18, 2022
    Seoul Robotics' LV5 CTRL TWR product can automate vehicles from around corners
  • Plug and play approach unifies workzone ITS
    July 18, 2012
    Caltrans District 7 is finalising a ConOps document which will detail a plug-and-play to work zone ITS operation. The organisation's Allen Z. Chen elaborates. Before August is out, on current planning, the California Department of Transportation (Caltrans) District 7 (which covers Los Angeles and Ventura Counties, with a combined population of close to 11 million people) intends to have finalised a Concept of Operations (ConOps) document dealing with Work Zone Transportation Management Systems (WZTMS). The