Skip to main content

Modelling could reduce traffic mayhem

A mathematical model that could significantly reduce traffic congestion by combining data from existing infrastructure, remote sensors, mobile devices and their communication systems has been developed by a research team from Australia’s Swinburne University of Technology. Swinburne‘s Congestion Breaker project utilises intelligent transport systems (ITS), a field of research that combines information and data from a range of sources for effective traffic control.
May 6, 2016 Read time: 2 mins

A mathematical model that could significantly reduce traffic congestion by combining data from existing infrastructure, remote sensors, mobile devices and their communication systems has been developed by a research team from Australia’s 5192 Swinburne University of Technology.

Swinburne‘s Congestion Breaker project utilises intelligent transport systems (ITS), a field of research that combines information and data from a range of sources for effective traffic control.

Led by Professor Hai L. Vu and developed in collaboration with 4728 VicRoads, the government body responsible for road management, through an Australian Research Council (ARC) Future Fellowships grant, the Congestion Breaker project has developed a mathematical approach that uses limited and incomplete data from existing operational traffic management systems to build a predictive control framework to minimise congestion.

The model optimises the traffic flows over a finite period, taking into account the short-term demand and traffic dynamic within links of the network. The resulting algorithm explicitly considers any spillback due to a queue built-up and travel time on the road between intersections and is capable of producing systems which would reduce congestion significantly.

Further innovative distributed control mechanism created in this project is inspired by research developed for packet scheduling in wireless networks. It can handle a large network containing thousands of sensors and actuators in real time.

The outcome is a comprehensive traffic management framework with computational flexibility accurate enough to reflect real urban traffic networks. It produces a scalable algorithm that can be integrated with current operating traffic management systems to reduce congestion and make better use of the existing road network infrastructure

“Our novelty is in developing an integrated traffic control scheme that combines linear model predictive control with route guidance to manage urban traffic flows, and making it scalable for large networks,” says Vu.

The researchers say the model has potential industry impact as a state-of-the-art, integrated, efficient traffic network management system. It’s a smart, scalable and easily integrated solution.

“Similar pilot projects can be developed for many other cities around the world,” says Vu. “And there are many possibilities for commercial applications in Australia and overseas in terms of smart mobility, sustainable cities for growing populations, and its concentration in big cities.”

For more information on companies in this article

Related Content

  • Camera technology a flexible and cost-effective option
    June 7, 2012
    Perceptions of machine vision being an expensive solution are being challenged by developments in both core technologies and ancillaries. Here, Jason Barnes and David Crawford look at the latest developments in the sector. A notable aspect of machine vision is the flexibility it offers in terms of how and how much data is passed around a network. With smart cameras, processing capabilities at the front end mean that only that which is valid need be communicated back to a central processor of any descripti
  • Tattile explores freedom of movement
    October 5, 2020
    Dense urban centres are complex enforcement environments – but camera-based traffic systems enable all aspects of monitoring, explains Massimiliano Cominelli of Tattile
  • Predicting the future for video camera systems
    March 12, 2012
    Jo Versavel, Managing Director of Traficon, talks about near-term trends in video camera systems. Jo Versavel starts by making one thing clear: long-term forecasts as to what the future holds for video-based traffic monitoring are to all intents and purposes meaningless. The state of the art is developing so fast that in reality it's impossible to say where we'll be in 10 years' time, says the Managing Director of Traficon. In his opinion making firm predictions even five years out is too ambitious, whereas
  • IRF World Congress 2024: road user charging is the future
    October 16, 2024
    Environmental emergency has put transport at the heart of policymakers’ agendas