Skip to main content

Melbourne uses big data to transform tram services

In Australia, Melbourne's Yarra Trams, the largest tram system in the world, is dramatically improving service on its 250 kilometres of double tracks. By using IBM big data, the cloud, mobile and analytics the company is able to reconfigure routes on the fly, pinpoint and fix problems before they occur, and respond quickly to challenges, whether it's sudden flooding, major events in the city, or just rush hour traffic. As a result, the iconic 100-year old system is consistently beating its own service
November 7, 2013 Read time: 2 mins
In Australia, Melbourne's 7525 Yarra Trams, the largest tram system in the world, is dramatically improving service on its 250 kilometres of double tracks.  By using IBM big data, the cloud, mobile and analytics the company is able to reconfigure routes on the fly, pinpoint and fix problems before they occur, and respond quickly to challenges, whether it's sudden flooding, major events in the city, or just rush hour traffic.

As a result, the iconic 100-year old system is consistently beating its own service and punctuality goals.

Yarra Tram's system works by tracking each of the 91,000 different pieces of equipment that make up the tram network, from tram cars to power lines to tracks, using intelligent sensors and information from employee and passenger reports about service and equipment. For example, an automated wheel-measuring machine built into the track at the tram depot detects the condition of a tram's wheel when it rolls over it.

This information is pulled together and hosted on the cloud, where analytics are applied to help the Yarra Trams' operations team quickly respond to, prioritise and coordinate maintenance and pinpoint future problems. Data analysis identifies trends or patterns in tram and infrastructure repair history, enabling operators to use the information as a guide for scheduling predictive maintenance. Maintenance crews receive work orders remotely on Mobile Devices, tackling repairs and potential disruptions before service is delayed, while an app provides passengers with the latest information about track tram arrival, departures, or delays and alternative routes.

Related Content

  • May 27, 2014
    Olympic challenges in Sochi
    Sporting events always create problems for traffic planners and none more so than the Winter Olympics. It is difficult to think of more diametrically opposite challenges for transport planners than the 2012 Olympics in London and this year’s Winter Olympics in Sochi: from a summer event in the heart of a megacity with well established transport infrastructure to winter games with unpredictable weather and events in remote and mountainous locations. The Winter Games are always a challenge and Sochi was no di
  • February 3, 2012
    A new beginning for travel information, based on users' needs
    Despite its name, the EU's forthcoming SUNSET project could represent a new beginning for travel information services. Here, Susan Grant-Muller and Frances Hodgson from the Institute for Transport Studies at the University of Leeds detail a project which is intended to exert a greater influence on network users' travel habits
  • February 3, 2012
    Detection analysis technology successfully predicts traffic flows
    David Crawford investigates new detection analysis technology from IBM. Locations on both the East and West Coasts of the US are scheduled for early deployments of IBM's new Traffic Prediction Tool (TPT) statistical analysis model for the fine-time resolution and near-term prediction of road flow conditions. Developed by IBM's Watson Research Laboratories, TPT is designed to analyse data from the the key detection indicators - average vehicle volumes and speeds passing a location in a given time interval -
  • October 14, 2014
    Siemens extends first driverless metro line in Paris
    Siemens has received an order worth around US$57 million from Paris transit authority RATP (Régie Autonome des Transports Parisiens) to supply the train control equipment and operational control system for the extension of the driverless metro line 14 in Paris. Siemens will supply its Trainguard communication based train control (CBTC) type automatic train protection system, which enables driverless operation. Siemens equipped the original stretch of line 14 for automatic operation in 1998, establish