Skip to main content

Inrix makes Signal Analytics available in UK

Firm says optimising signal timings at junctions can reduce carbon emissions from idling
By Adam Hill March 27, 2023 Read time: 2 mins
Signal Analytics uses hundreds of millions of anonymous trips per day (© Photo London UK | Dreamstime.com)

Analytics specialist Inrix UK has made its Signal Analytics product available in the UK, which the company says is "easier, faster and cheaper" than installing traditional monitoring infrastructure at a junction.

Public sector agencies in Germany and the US are already using the junction and corridor analytics in a cloud-based platform, which is based exclusively on anonymous connected vehicle data.

Inrix says is designed for all levels of traffic professionals – management, engineering, operations and maintenance.

In the UK, Transport for Greater Manchester (TfGM) is using Signal Analytics and is "looking to improve traffic signal junction efficiency whilst also providing pedestrian priority".

TfGM will also explore how Signal Analytics can assist with monitoring and evaluation of the junction upgrades and is looking more widely "for monitoring the network performance and identifying changes in driver behaviour".

TfGM wants to examine its potential "to maximise the benefits of data and connectivity to align with future connected services”.

Signal Analytics calculates industry-defined metrics including control delay, turn movements and observed vehicle counts, reporting network-wide metrics weekly in a web-based application available through Inrix IQ, a Software as a Service (SaaS) application suite.

Signal Analytics uses hundreds of millions of anonymous trips per day in the UK to deliver granular insights on signal-controlled junctions, continually collecting high accuracy vehicle data.

Inrix director Dominic Paulo says it will "further enable road authorities across the UK to fully understand signal performance, saving time, money, and help to further improve the environment".

Reducing excessive delays and optimising signal timings at junctions can reduce carbon emissions from idling.

Inrix calculated a 10-second reduction in every registered vehicle’s delay at signals daily would translate into 130,000 fewer metric tons of CO2 emitted annually.

For more information on companies in this article

Related Content

  • ITS needs data highways
    November 18, 2014
    Transport and traffic data is on the increase but there must be an integrated data highway to derive the maximum ITS benefits, argues Deutsche Telekom. From public transport operators recording increasingly precise and comprehensive data on their vehicle’s position and driving behaviour to local authorities using RFID and video systems to control traffic on their streets and highways, the amount of traffic data is growing rapidly.
  • US economic stimulus package highlights ITS technology
    July 17, 2012
    US Secretary of Transportation Ray LaHood talks to ITS International about economic stimulus funding and the absolute need to maintain and increase the use of technology in transportation. Of the total of $787 billion of funding announced under the American Recovery and Reinvestment Act (ARRA), the economic stimulus package which was signed into law by US President Barack Obama on 17 February 2009, $48.1 billion will go to the US Department of Transportation (USDOT). Of that, $27.5 billion is for highway in
  • How public transit improves quality of life
    June 29, 2022
    There are various reasons why Mobility as a Service is catching on more in Europe than the US – but there are still other ways in which access to mobility can be improved across the states, finds Gordon Feller
  • Real time active traffic management improves travel times
    July 17, 2012
    Traffic management centres (TMC) have traditionally served to provide surveillance and responses to traffic incidents and recurring and non-recurring changes in road networks. Typically, a TMC collected field data from the roadway and transit infrastructure and provided the integration necessary for operators to see what was happening and then coordinate a response. Standard operating procedures (SOPs) guided operators on how to respond to a given situation. It eventually became impractical for TMC operat