Skip to main content

Inrix makes Signal Analytics available in UK

Firm says optimising signal timings at junctions can reduce carbon emissions from idling
By Adam Hill March 27, 2023 Read time: 2 mins
Signal Analytics uses hundreds of millions of anonymous trips per day (© Photo London UK | Dreamstime.com)

Analytics specialist Inrix UK has made its Signal Analytics product available in the UK, which the company says is "easier, faster and cheaper" than installing traditional monitoring infrastructure at a junction.

Public sector agencies in Germany and the US are already using the junction and corridor analytics in a cloud-based platform, which is based exclusively on anonymous connected vehicle data.

Inrix says is designed for all levels of traffic professionals – management, engineering, operations and maintenance.

In the UK, Transport for Greater Manchester (TfGM) is using Signal Analytics and is "looking to improve traffic signal junction efficiency whilst also providing pedestrian priority".

TfGM will also explore how Signal Analytics can assist with monitoring and evaluation of the junction upgrades and is looking more widely "for monitoring the network performance and identifying changes in driver behaviour".

TfGM wants to examine its potential "to maximise the benefits of data and connectivity to align with future connected services”.

Signal Analytics calculates industry-defined metrics including control delay, turn movements and observed vehicle counts, reporting network-wide metrics weekly in a web-based application available through Inrix IQ, a Software as a Service (SaaS) application suite.

Signal Analytics uses hundreds of millions of anonymous trips per day in the UK to deliver granular insights on signal-controlled junctions, continually collecting high accuracy vehicle data.

Inrix director Dominic Paulo says it will "further enable road authorities across the UK to fully understand signal performance, saving time, money, and help to further improve the environment".

Reducing excessive delays and optimising signal timings at junctions can reduce carbon emissions from idling.

Inrix calculated a 10-second reduction in every registered vehicle’s delay at signals daily would translate into 130,000 fewer metric tons of CO2 emitted annually.

For more information on companies in this article

Related Content

  • Derq embarks on smart corridor project 
    December 14, 2021
    Derq software will detect 'near miss' interactions at intersections and pavements 
  • Investment and innovation the future of ITS
    January 31, 2012
    Cisco's Paul Brubaker, former administrator of the US Department of Transportation's (USDOT's) Research and Innovative Technology Administration (RITA), takes a look at how the ITS sector is starting to attract the attention of major corporations and what this will mean for intelligent transportation in the coming years
  • Idaho adds human dimension to winter savings
    September 23, 2014
    Idaho leverages the increased capability and reliability of its road weather sensor network to reduce costs and prevent accidents. Weather-related accidents can form a significant chunk of an authorities’ annual road casualty statistics. While authorities cannot control the weather, the technology exists to monitor the road conditions and react with warnings to motorists and the treatment of icy or snow-covered roads. However, with all capital expenditure now placed under the microscope of public scrutiny,
  • Adopting universal technology platforms for tolling
    July 16, 2012
    Dave Marples of Technolution argues that the continuing development of tolling-specific onboard equipment is leading us up a blind alley. We should, he says, be looking to realise universal platforms with universal application. The near-future automobile contains information systems of a sophistication to rival a jet airliner of only a few years ago, yet is 'piloted' by a considerably less well-trained individual of highly variable mental and physical capacity, and operated in a hostile, unpredictable and p