Skip to main content

Hackers can fool self-driving car sensors into evasive action

The laser ranging (LIDAR) systems that most self-driving cars rely on to sense obstacles can be hacked by a setup costing just US$60, a security researcher has told IEEE spectrum. According to Jonathan Petit, principal scientist at software security company Security Innovation, he can take echoes of a fake car, pedestrian or wall and put them in any location. Using such a system, which he designed using a low-power laser and pulse generator, attackers could trick a self-driving car into thinking somethin
September 8, 2015 Read time: 2 mins
The laser ranging (LIDAR) systems that most self-driving cars rely on to sense obstacles can be hacked by a setup costing just US$60, a security researcher has told 6781 IEEE spectrum.

According to Jonathan Petit, principal scientist at software security company Security Innovation, he can take echoes of a fake car, pedestrian or wall and put them in any location. Using such a system, which he designed using a low-power laser and pulse generator, attackers could trick a self-driving car into thinking something is directly ahead of it, forcing it to slow down.

In a paper written while he was a research fellow in the University of Cork’s Computer Security Group and due to be presented at the Black Hat Europe security conference in November, Petit describes the system he built with off the shelf components that can create the illusion of an obstacle anywhere from 20 to 350 metres from the LIDAR unit and make multiple copies of the simulated obstacles, and even make them move.

While the short-range radars used by many self-driving cars for navigation operate in a frequency band requiring licencing, LIDAR systems use easily-mimicked pulses of laser light to build up a 3-D picture of the car’s surroundings and were ripe for attack.

“I can spoof thousands of objects and basically carry out a denial of service attack on the tracking system so it’s not able to track real objects,” Petit told IEEE spectrum. I don’t think any of the LIDAR manufacturers have thought about this or tried this.”

For more information on companies in this article

Related Content

  • RTMS Echo unlocks powerful data
    September 4, 2020
    Image Sensing Systems has announced that the new RTMS Echo unlocks the power of per-vehicle data by providing extremely accurate, eye-opening data, which helps gain new insights, optimise decisions and realise results. Data is the key source to fuelling new insights and the results from those insights impact agency core directives.
  • Google AV in collision with public transit bus
    March 1, 2016
    According to a report made by Google to the Department of Motor Vehicles (DMV), one of its autonomous vehicles (AV) has been in collision with a municipal bus in California. The crash happened on Valentine’s Day, when the Lexus RX-450H was travelling in autonomous mode in the right-hand lane approaching an intersection. It moved to the far right lane to make a right turn, but stopped when it detected sand bags sitting around a storm drain and blocking its path.
  • Keeping a close watch on ‘too-dangerous-to-drive’ highway
    June 21, 2016
    Like many others, the authorities in Argentina implemented ITS to improve road safety – but this case was a little different to most as Mauro Nogarin explains. The 70km of highway that separate Argentina’s capital Buenos Aires from the city of La Plata had long been considered too dangerous for anyone to make the trip with a private car. Figures on criminal attacks and vandalism with stones, nails, logs, spark plugs or any other element that can damage a car’s tyres and cause them to stop in order rob th
  • ITS America supports moves for safe sharing of 5.9 GHz spectrum
    July 18, 2014
    Scott F. Belcher, president and CEO of the Intelligent Transportation Society of America (ITS America), has responded to the Wi-Fi Innovation Act introduced by US Representatives Bob Latta, Darrell Issa, Anna Eshoo and Doris Matsui. The Act would put pressure on the Federal Communications Commission (FCC) to allow unlicensed devices to operate in the 5.9 GHz band of spectrum set aside by the FCC for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication technology showcased by Preside