Skip to main content

Hackers can fool self-driving car sensors into evasive action

The laser ranging (LIDAR) systems that most self-driving cars rely on to sense obstacles can be hacked by a setup costing just US$60, a security researcher has told IEEE spectrum. According to Jonathan Petit, principal scientist at software security company Security Innovation, he can take echoes of a fake car, pedestrian or wall and put them in any location. Using such a system, which he designed using a low-power laser and pulse generator, attackers could trick a self-driving car into thinking somethin
September 8, 2015 Read time: 2 mins
The laser ranging (LIDAR) systems that most self-driving cars rely on to sense obstacles can be hacked by a setup costing just US$60, a security researcher has told 6781 IEEE spectrum.

According to Jonathan Petit, principal scientist at software security company Security Innovation, he can take echoes of a fake car, pedestrian or wall and put them in any location. Using such a system, which he designed using a low-power laser and pulse generator, attackers could trick a self-driving car into thinking something is directly ahead of it, forcing it to slow down.

In a paper written while he was a research fellow in the University of Cork’s Computer Security Group and due to be presented at the Black Hat Europe security conference in November, Petit describes the system he built with off the shelf components that can create the illusion of an obstacle anywhere from 20 to 350 metres from the LIDAR unit and make multiple copies of the simulated obstacles, and even make them move.

While the short-range radars used by many self-driving cars for navigation operate in a frequency band requiring licencing, LIDAR systems use easily-mimicked pulses of laser light to build up a 3-D picture of the car’s surroundings and were ripe for attack.

“I can spoof thousands of objects and basically carry out a denial of service attack on the tracking system so it’s not able to track real objects,” Petit told IEEE spectrum. I don’t think any of the LIDAR manufacturers have thought about this or tried this.”

For more information on companies in this article

Related Content

  • Spark plugs may be replaced by lasers
    May 21, 2012
    For more than 150 years, spark plugs have powered internal combustion engines. Automakers are now one step closer to being able to replace this long-standing technology with laser igniters, which will enable cleaner, more efficient, and more economical vehicles.
  • Intersection management, cooperative infrastructures - what next?
    February 1, 2012
    What do recent vehicle recalls mean for future cooperative infrastructures? Anthony Smith takes a look. As ITS industry stakeholders converge on Amsterdam for the 2010 Cooperative Mobility Showcase, an unprecedentedly wide range of technologies will be on display demonstrating what might be achievable in the future from innovations based on Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications.
  • Getting to the point
    September 4, 2018
    Cars are starting to learn to understand the language of pointing – something that our closest relative, the chimpanzee, cannot do. And such image recognition technology has profound mobility implications, says Nils Lenke Pointing at objects – be it with language, using gaze, gestures or eyes only – is a very human ability. However, recent advances in technology have enabled smart, multimodal assistants - including those found in cars - to action similar pointing capabilities and replicate these human qual
  • Kapsch looks to the future
    December 16, 2014
    Colin Sowman reports from a two-day meeting where industry leaders, academics and political advisers presented their thoughts on the future of mobility. Most governments do not dare to introduce tolling systems… they are too frightened.” So said Georg Kapsch in his capacity of chief operating officer of Kapsch TrafficCom, during a forward-looking press event at the company’s headquarters in Vienna.