Skip to main content

Hackers can fool self-driving car sensors into evasive action

The laser ranging (LIDAR) systems that most self-driving cars rely on to sense obstacles can be hacked by a setup costing just US$60, a security researcher has told IEEE spectrum. According to Jonathan Petit, principal scientist at software security company Security Innovation, he can take echoes of a fake car, pedestrian or wall and put them in any location. Using such a system, which he designed using a low-power laser and pulse generator, attackers could trick a self-driving car into thinking somethin
September 8, 2015 Read time: 2 mins
The laser ranging (LIDAR) systems that most self-driving cars rely on to sense obstacles can be hacked by a setup costing just US$60, a security researcher has told 6781 IEEE spectrum.

According to Jonathan Petit, principal scientist at software security company Security Innovation, he can take echoes of a fake car, pedestrian or wall and put them in any location. Using such a system, which he designed using a low-power laser and pulse generator, attackers could trick a self-driving car into thinking something is directly ahead of it, forcing it to slow down.

In a paper written while he was a research fellow in the University of Cork’s Computer Security Group and due to be presented at the Black Hat Europe security conference in November, Petit describes the system he built with off the shelf components that can create the illusion of an obstacle anywhere from 20 to 350 metres from the LIDAR unit and make multiple copies of the simulated obstacles, and even make them move.

While the short-range radars used by many self-driving cars for navigation operate in a frequency band requiring licencing, LIDAR systems use easily-mimicked pulses of laser light to build up a 3-D picture of the car’s surroundings and were ripe for attack.

“I can spoof thousands of objects and basically carry out a denial of service attack on the tracking system so it’s not able to track real objects,” Petit told IEEE spectrum. I don’t think any of the LIDAR manufacturers have thought about this or tried this.”

Related Content

  • January 26, 2012
    Improving driver information, making in-vehicle systems a reality
    Scott J. McCormick, president of the Connected Vehicle Trade Association, considers what we have to do next to make the more widespread deployment of automotive telematics a reality
  • January 26, 2012
    Increasing road safety with automated driver assistance systems
    Jon Masters looks at how drivers will be trained to use the increasing number of advanced driver assistance systems being incorporated into modern cars
  • July 17, 2012
    Cloud computing technology benefits GIS
    Geographic Information Systems are a relatively late adopter of cloud computing,but the benefits of host services for geospatial data and analysis are becoming clear. Jason Barnes reports Both the concept and the reality of cloud computing have been around for some time. More and more industry sectors are entrusting external service providers with the provision of their computing services via the internet. However, the Geographic Information System (GIS) industry has been slow to embrace the trend. This is
  • November 12, 2015
    Preventing connected vehicles creating disconnected drivers
    Advanced driver assistance systems (ADAS) are evolving at a rapid pace – but drivers’ ability to cope with them is not and at some point the mismatch must be addressed. Probably the biggest challenge the transportation industry has ever faced.” That is how Dr Bryan Reimer of Massachusetts Institute of Technology AgeLab describes the challenges posed by semi-autonomous vehicles.