Skip to main content

Hackers can fool self-driving car sensors into evasive action

The laser ranging (LIDAR) systems that most self-driving cars rely on to sense obstacles can be hacked by a setup costing just US$60, a security researcher has told IEEE spectrum. According to Jonathan Petit, principal scientist at software security company Security Innovation, he can take echoes of a fake car, pedestrian or wall and put them in any location. Using such a system, which he designed using a low-power laser and pulse generator, attackers could trick a self-driving car into thinking somethin
September 8, 2015 Read time: 2 mins
The laser ranging (LIDAR) systems that most self-driving cars rely on to sense obstacles can be hacked by a setup costing just US$60, a security researcher has told 6781 IEEE spectrum.

According to Jonathan Petit, principal scientist at software security company Security Innovation, he can take echoes of a fake car, pedestrian or wall and put them in any location. Using such a system, which he designed using a low-power laser and pulse generator, attackers could trick a self-driving car into thinking something is directly ahead of it, forcing it to slow down.

In a paper written while he was a research fellow in the University of Cork’s Computer Security Group and due to be presented at the Black Hat Europe security conference in November, Petit describes the system he built with off the shelf components that can create the illusion of an obstacle anywhere from 20 to 350 metres from the LIDAR unit and make multiple copies of the simulated obstacles, and even make them move.

While the short-range radars used by many self-driving cars for navigation operate in a frequency band requiring licencing, LIDAR systems use easily-mimicked pulses of laser light to build up a 3-D picture of the car’s surroundings and were ripe for attack.

“I can spoof thousands of objects and basically carry out a denial of service attack on the tracking system so it’s not able to track real objects,” Petit told IEEE spectrum. I don’t think any of the LIDAR manufacturers have thought about this or tried this.”

Related Content

  • April 29, 2015
    Foundation funds research for informed campaigning
    ITS International talks to Professor Stephen Glaister, director of the transport research and lobbying organisation, the RAC Foundation. It is through the eyes of an economist that Professor Stephen Glaister, emeritus professor of transport and infrastructure at Imperial College London and director of the RAC Foundation, views current and future transport problems. Having spent 30 years at the London School of Economics and another 10 at Imperial, the move to the RAC Foundation was a radical departure from
  • April 7, 2014
    America fires V2V starting gun
    Leo McCloskey, ITS America’s senior vice president for Technical Programs, talks to Jason Barnes about what the recent NHTSA ruling on light vehicle connectivity means for cooperative infrastructures in North America. In early February the US Department of Transportation’s (USDOT’s) National Highway Traffic Safety Administration (NHTSA) announced it had decided to start taking steps to enable Vehicle-to-Vehicle (V2V) communication technology for light vehicles. In so doing, the many safety-related applicati
  • January 26, 2018
    Jenoptik uses sensor fusion to avoid monitoring confusion
    Jenoptik’s Uwe Urban looks at the advantages of ‘sensor fusion’ for the ITS sector. When considering the ideal sensing and monitoring system to enable the ITS sector to deliver improvements in mobility and road safety, for general policing security and border protection, we have to think beyond radar-base systems or laser scanners. What is needed today are solutions for detecting and tracking vehicles while recording evidence to deacide if any action is necessary. There is no sole sensor capable of
  • June 23, 2020
    Here: AI has place in ‘privacy by design’
    Artificial intelligence may improve traffic in cities and keep location data private, but Here Technologies shows that it only takes four points of anonymous data to predict your identity.