Skip to main content

Sick introduces Free Flow Profiler

Sick has released a vehicle measurement system which it says enables accurate 3D profiling of vehicles across multiple lanes in free-flow traffic.
August 30, 2019 Read time: 2 mins
Sick has released a vehicle measurement system which it says enables accurate 3D profiling of vehicles across multiple lanes in free-flow traffic. The Free Flow Profiler is an all-weather system suitable for vehicle tolling and classification uses, especially in operations such as optimal weight loading of ferries or trains and for verifying vehicle dimensions to maximise revenue recovery, the company adds. During multi-lane, free road movement, Sick’s 2D Lidar sensors scan traffic and measu

The Free Flow Profiler is an all-weather system suitable for vehicle tolling and classification uses, especially in operations such as optimal weight loading of ferries or trains and for verifying vehicle dimensions to maximise revenue recovery, the company adds.

During multi-lane, free road movement, Sick’s 2D Lidar sensors scan traffic and measure vehicle length, width and height. The system can be enlarged to include multiple lanes or adapted with varying sensor layouts to obtain the required information for monitoring purposes.

According to Sick, the system has a range up to 40m and can profile all vehicle types from heavy road transport to passenger cars, towed vehicles and motorbikes.

Vehicle measurements are processed in the Sick Traffic Controller to produce a 3D model of each vehicle. The system captures vehicle dimensions, vehicle type, driving direction and lane assignment. Options to integrate vehicle classification, axle counting or detection of overheated vehicle parts can be added to meet specific local operator conditions and requirements.

Neil Sandhu, Sick’s UK product manager for imaging, measurement and ranging, says the solution is versatile “whenever accurate 3D vehicle profile is an advantage”.

“For example, warnings of over-height or over-sized vehicles approaching bridges or tunnels, or loading ferries so that the distribution of vehicles and weights is optimised,” he continues. “Up to 30 different automated vehicle classifications enable precise charging of toll fees.”

For more information on companies in this article

Related Content

  • Need for secure approach to connected vehicle technology
    January 7, 2013
    Accidental or malicious issue of false messages to connected vehicles could result in dire consequences, so secure systems of authentication and certification are likely to be necessary, write Paul Avery and Sandra Dykes. Connectivity among vehicles in urban traffic systems will provide opportunity for beneficial impacts such as congestion reduction and greater safety. However, it also creates security risks with the potential for targeted disruption. Security algorithms, protocols and procedures must take
  • Aimsun solutions support new planning tool for low-carbon mobility
    March 8, 2023
    The EU-funded HARMONY research project is behind a new planning tool to support sustainable transport policymaking. Aimsun scientific researcher Lampros Yfantis explains the key role of traffic simulation with Aimsun Ride in planning for on-demand mobility and logistics services
  • Transport is evolving – and road safety must keep pace, says Parifex
    May 25, 2023
    France-headquartered Parifex works at the cutting edge of Lidar-based speed control systems. CEO Paul-Henri Renard discusses safety advances made in recent decades - and the causes of accidents that remain…
  • Digital Light Processing transforms travel information
    July 19, 2012
    David Crawford investigates the potential of new projection technology. Fifty years on from its invention of the microchip, US company Texas Instruments (TI) has compressed the technology into a surface area of just 4.3mm. As such, it forms the heart of a new Pico Digital Light Processing (DLP) system that is set to transform travel information delivery for millions of users on the move - by making it projectable.