Skip to main content

Kyocera’s illuminating innovation

Company develops lighting system that operates in both visible and near-infrared bands
By Alan Dron November 21, 2022 Read time: 2 mins
Kyocera says its system improves detection of potential hazards at night or in poor visibility

Kyocera says it has developed the world’s first automotive night vision system that combines white and near-infrared in a single headlight unit, improving detection of potential hazards at night or in poor visibility.

The company’s Automotive Night Vision System integrates the two light diodes, emitting both white (RGB) and near-infrared (NIR) light on the same optical axis. This eliminates image parallax and enhances image recognition. 

The system integrates RGB-NIR sensors on the vehicle and what the company describes as Image-Fusion AI Recognition Technology for high-performance object recognition. 

For the white light, Kyocera uses extremely bright, high-efficiency, miniaturized GaN laser light technology that can illuminate up to 250m ahead of the vehicle.  The system incorporates automatic beam-shaping functionality that prevents glare for oncoming drivers by automatically shifting visible light into a low-beam pattern when necessary, while the NIR light can remain in high-beam mode. 

The system also uses original fusion recognition AI technology developed by Kyocera’s Advanced Technology Laboratories. This uses AI to combine the images captured by the white and NIR lights and presents them to the driver, to more accurately detect risk factors ahead of the vehicle. 

The AI will, for example, differentiate between pedestrians and vehicles with high accuracy even in low visibility conditions, the company says.

Kyocera intends to continue R&D on the system, aiming for commercialisation after 2027. 

To reduce traffic accidents and promote autonomous driving, vehicle manufacturers will require more advanced hazard-detection systems. The global market for automotive night vision systems was estimated at approximately $2.17 billion in 2020, with the market expected to grow at a compounded annual rate of more than 16.5% from 2020 to 2027.

The company also aims to contribute to safer transportation through traffic-monitoring infrastructure technologies, such as smart road-side units and other equipment.

For more information on companies in this article

Related Content

  • New solutions for catching texting drivers
    October 28, 2016
    Many countries have laws prohibiting texting while driving but enforcement is proving difficult – David Crawford looks at some new approaches being tried by authorities. Finding definitive solutions – technological, regulatory and educational - to the potentially lethal practice of people driving while using mobile phones is proving elusive, while the stakes grow higher.
  • Jenoptik to present non-invasive enforcement systems
    September 7, 2016
    Jenoptik’s Traffic Solutions Division will use the ITS World Congress Melbourne to present a range of traffic enforcement systems which are active in Australia and around the world: the company aims to demonstrate how it is improving roads, journeys and communities with 30,000 cameras operational in over 80 countries and with 480 staff working on traffic solutions and more than 50 million plates read every day.
  • LeddarTech increases d-tec sensor range
    January 31, 2013
    LeddarTech, Canadian supplier of advanced 3D detection and tracking systems based on patented Leddar (Light Emitting Diode Detection and Ranging) technology, has launched the second generation of its d-tec 3D traffic sensor. Leddar d-tec emits non-visible light into the area of interest and measures the time taken for the light to reflect off of objects and return to the sensor. The second generation provides a range increase of 25 per cent for all d-tec products without comprising the accuracy and performa
  • Flir launches thermal sensors to accelerate self-driving cars
    January 9, 2018
    To help advance the reliability required for self-driving cars (SDCs), Flir Systems has launched a high-resolution Thermal Vision Automotive Development Kit (ADK), enabling developers to add an affordable, long-range thermal camera to their advanced driver assistance systems. The solution is said to help drivers and future SDCs see in challenging environments such as darkness, sun glare, fog, smoke and haze. ADK features the high-resolution Flir Boson, which is equipped with an Intel Movidius Myriad 2