Skip to main content

Bluetooth-based traffic detection

Traffax has launched BluFax, based on the globally ubiquitous Bluetooth digital communications protocol, which operates by detecting the MAC addresses of Bluetooth signals from passing cars.
February 6, 2012 Read time: 2 mins
A BluFax freeway installation in Indiana
2262 Traffax has launched BluFax, based on the globally ubiquitous 1835 Bluetooth digital communications protocol, which operates by detecting the MAC addresses of Bluetooth signals from passing cars. By positioning two units at distances of between 1-3km, vehicle travel times are calculated from the relative detection times recorded by the two units. Traffax has licensed the patent-pending technology from the University of the Maryland, where the concept originated under the support of the Maryland State Highway Administration.

Traffax says Bluetooth address matching can be used for a number of applications including measurement of travel times on both freeway and arterial roadways, measurement of origin-destination patterns, and tracking of pedestrian flows. Since it directly measures travel times and space-mean speeds, Traffax claims BluFax is one of the few technologies that offers the ability to accurately measure arterial travel times. The company says that demonstrated detection rates exceeding five per cent of the total traffic stream, yield sample sizes adequate for reliable measurement of arterial flows.

There are two versions of the Traffax BluFax unit. An off-line version is offered that stores its measurements on removable storage media for subsequent processing. This device is typically used for traffic studies, performance measurement and validation of other data collection techniques. It is self-powered and requires no communications.

A real-time version is also offered that continuously transmits the MAC addresses and detection times of passing vehicles to a collection site for continuous processing. The real-time unit is used for such applications as display of travel times on variable message signs, and data inputs to 511 telephone systems.

For more information on companies in this article

Related Content

  • University research shows a few self-driving cars can improve traffic flow
    May 15, 2017
    The presence of just a few autonomous vehicles can eliminate the stop-and-go driving of the human drivers in traffic, along with the accident risk and fuel inefficiency it causes, according to new research by the University of Illinois at Urbana-Champaign. Funded by the National Science Foundation’s Cyber-Physical Systems program, the research was led by a multi-disciplinary team of researchers with expertise in traffic flow theory, control theory, robotics, cyber-physical systems, and transportation engine
  • New Hampshire plans for tomorrow’s communication
    August 21, 2017
    Someone once likened predicting the future to ‘nailing a jelly to the wall’. With ITS, C-ITS and V2X technology progressing at such a pace, predicting the future is more akin to trying to nail three jellies to the wall – but only having one nail. And yet with roadways having a lifetime measured in decades, that is exactly what highway engineers and traffic planners are expected to do. Fortunately, New Hampshire DoT (NHDoT) believes its technological advances may be able to provide a solution. The Central Ne
  • C/AVs could mean cheaper roads
    October 28, 2019
    The safety benefits of C/AVs have long been promoted – but research suggests they should also contribute to cheaper roads. David Crawford investigates the potential benefits in infrastructure costs Building narrower freeway lanes to accommodate the enhanced route-tracking capabilities of connected and autonomous vehicles (C/AVs), running in platoon conditions, could result in cost savings of £0.5 million (€0.56 million or US$6.5 million) for every km of road length built. Such benefits could be secur
  • Growth of ANPR applications for enforcement, tolling and more
    February 1, 2012
    Automatic number plate recognition continues to find new applications beyond the traditional. In coming years, we can expect the application set to grow significantly Moore's Law has seen to it that computer processing power has improved out of all comparison in the 30-plus years since the first working Automatic Number Plate Recognition (ANPR) system was created by the UK's Police Scientific Development Branch. The attendant increases in systems' capabilities have resulted in ANPR being deployed globally