Skip to main content

Affectiva and Nuance to offer assistance

US company Affectiva plans to develop a joint automotive assistant which detects driver distraction and drowsiness and voices recommendations such as navigating to a coffee shop. The solution is intended to align its dialogue to a motorist’s emotional state based on facial and verbal expressions. The integrated solution will combine the Affectiva Automotive AI solution with UK-based Nuance Communications’ Dragon Drive platform. Affectiva Automotive AI measures facial expressions and emotions such as ange
December 6, 2018 Read time: 2 mins
US company Affectiva plans to develop a joint automotive assistant which detects driver distraction and drowsiness and voices recommendations such as navigating to a coffee shop. The solution is intended to align its dialogue to a motorist’s emotional state based on facial and verbal expressions.


The integrated solution will combine the Affectiva Automotive AI solution with UK-based Nuance Communications’ Dragon Drive platform.

Affectiva Automotive AI measures facial expressions and emotions such as anger and surprise as well as verbal expressions in real time. It also displays icons which indicate drowsiness such as yawning, eye closure and blink rates and physical or mental distraction.Through the partnership, Dragon Drive will enable the in-car assistant to interact with passengers via emotional and cognitive state detection. It currently facilitates this correspondence through gesture, touch, gaze detection and voice recognition powered by natural language understanding.

Stefan Ortmanns, executive vice president and general manager, Nuance Automotive, says these additional modes of interaction will help its OEM partners develop automotive assistants which can ensure the safety and efficiency of connected and autonomous cars.

In the future, the automotive assistant may also be able to take control of semi-autonomous vehicles if the driver displays signs of physical or mental distraction.

Related Content

  • Global V2V penetration in new cars to reach 69 per cent by 2027
    November 21, 2013
    The latest analysis by ABI research expects global V2V penetration in new cars to increase from 10.9 per cent in 2018 to 69 per cent in 2027. ABI Research vice-president and practice director Dominique Bonte comments: “Huge interest in autonomous driving across the automotive ecosystem firmly positions V2X technology and applications as a key component of driverless car systems. However, some OEMs are claiming some forms of (semi)-autonomous driving can be achieved by just using in-vehicle ADAS-sensors.
  • University of Michigan’s M City to test autonomous driving
    March 27, 2015
    The University of Michigan is creating the Mobility Transformation Center (MTC), in partnership with government and leading tech companies, as a means to test and develop the infrastructure and in-vehicle components to make autonomous vehicles a reality. M City, the nickname for the MTC, is a mock city that allows developers to test a fully autonomous driving experience in a real-world environment. With completion scheduled for July, the 32-acre facility on U of M’s North Campus will include buildings,
  • Escort unveils connected car radar / laser detection system
    November 9, 2017
    Escort has announced the launch of what it claims to be the first radar and laser detector designed for connected cars (CCs) to alert drivers of the latest ticket threats in real-time. Through built in Wi-Fi, the Escort Max 360c (EM360) updates drivers through the vehicles on board connection. The EM360 connects directly to the CC’s Wi-FI and automatically connects to the real-time ticket-protection network, Escort Live (EL), without needing the smartphone to connect to the detector. It is designed with
  • Hurdles to MaaS adoption highlighted
    January 25, 2018
    Jack Opiola talks to some MaaS advocates in the US. Cities will accommodate almost 60% of the world’s population by 2025 and technology is outpacing transportation plans and planners - putting extreme pressures upon planners and transportation systems alike. Big data, digital payments, ubiquitous communications, smartphone applications, on-demand travel and autonomous vehicles are all shredding existing transport plans. Never before has the pace of population growth and the tools to address this problem