Skip to main content

'Talking cars' could save lives, study says

ITS Australia-led research suggests curve warnings on roads would help drivers
By Ben Spencer November 26, 2020 Read time: 2 mins
Data shows older vehicles are involved in 36% of all fatal crashes while newer vehicles make up 12% (© Piman Khrutmuang | Dreamstime.com)

A research project led by ITS Australia has found digital communication technologies that allow cars to interpret their surroundings could reduce vehicle crashes by 78%.

ITS Australia’s Connectivity in C-ITS report is based on an eight months of research carried out by the University of Melbourne. 

It involved a comprehensive analysis of traffic accident data in the state of Victoria from 2006-2019.

Researchers focused on understanding cooperative (C-ITS) technologies that would help drivers, in areas such as curve speed. 

Findings show curve speed warnings could have the most significant impact in rural areas as more than half of all fatal accidents occurred in rural Victoria, compared to 37% in urban areas such as Melbourne. 

The report also reveals motorcyclists may benefit the most from curve warnings as data shows curve speed was a factor in 17% of crashes involving motorbikes.

C-ITS vehicle adaptations include cameras, ultrasonic or wireless sensors, antennas, 3D HD mapping capabilities, GPS and Lidar.

Professor Majid Sarvi, lead of transport technologies at the University of Melbourne, suggests that some technologies would become standard in new cars off the production line, while older vehicles could be retrofitted with aftermarket hardware.

Data from Australasian safety authority Ancap, included within the study, shows the oldest vehicles (built in 2001 or earlier) on Australian roads accounted for just 20% of the total national vehicle fleet but were over-represented in fatal crash data. 

“One in five cars on Victorian roads are considered older, but they are involved in 36% of all fatal crashes. By contrast, newer vehicles [built between 2012-2017] make up 31% of road vehicles but are involved in just 12% of fatal crashes,” Sarvi says. 

The rate of fatal crashes per registered vehicle for the oldest vehicles was four times higher than that of newer vehicles.

As part of the study, traffic micro-simulation experiments were conducted in Melbourne’s arterial corridors within Aimes (Australian Integrated Multimodal EcoSystem). 

Researchers concluded that if just 30% of all vehicles on the roads during peak hour were connected vehicles, traffic congestion could be reduced by up to 11%.

A separate network micro-simulation in Melbourne’s central business district during peak hour (pre-Covid-19) found that average travel speeds could improve by up to 10% if a fifth of cars were connected vehicles. 

ITS Australia and the University of Melbourne funded the research alongside iMove Cooperative Research Centre, Department of Infrastructure, Transport, Regional Development and Communications.

It also received support from IAG, Intelematics and Transmax.
 

For more information on companies in this article

Related Content

  • Invisible barriers: how urban transport fails women – and how we can solve it
    March 7, 2025
    Gender equality should be a reality in our cities, not just an aspiration
  • Virginia Tech reveals vested interest
    May 9, 2019
    New ITS systems on either side of the Atlantic – such as an intriguing piece of connected clothing – aim to reduce the casualty toll among road maintenance personnel, says Alan Dron t’s not a lot of fun working on road maintenance or road construction worksites. By definition, you’re out in all weathers. You’re not popular with motorists, who blame you for hold-ups. It’s frequently physically arduous. And, worst of all, the sector has an unenviable record of injuries - even fatalities. Often working jus
  • Vaisala: Weather data is vital for connected vehicles
    August 26, 2016
    Vaisala’s Dr Kevin Petty explains why the weather will continue to play a big part in road safety and traffic management in the smart cities of the future. The world is becoming increasingly connected. Thanks to advances in information and communications technology, the cities we live in are becoming ‘smart’, with everything from education to law enforcement managed by integrated tech solutions in a bid to improve quality of life.
  • Wireless traffic data in real time
    January 31, 2012
    The effect of moving objects on the electromagnetic landscape set up by cellular telephony networks can be detected and interpreted to give real-time traffic data across large geographical areas at low cost. Here, we revisit the Celldar concept. Global economic downturn has pushed public-sector agencies, transport administrations among them, to push even harder for cost efficiencies. Unfortunately, when it comes to transport safety and efficiency the public sector often has to work up to a cost rather than