Skip to main content

Smart technology keeps infrastructure operating safely

US Departments of Transportation (DOTs) are using smart technology to warn civil engineers when something is wrong with the infrastructure, says the American Association of State Highway and Transportation Association (AASHTO). Sensors installed on bridges, in roadways, and on maintenance vehicles are communicating real-time performance and weather data, allowing engineers to solve problems before they occur. "Most people look at a road or a bridge and never realise the technology that today's modern tra
August 30, 2013 Read time: 3 mins
US Departments of Transportation (DOTs) are using smart technology to warn civil engineers when something is wrong with the infrastructure, says the 4944 American Association of State Highway and Transportation Officials (AASHTO). Sensors installed on bridges, in roadways, and on maintenance vehicles are communicating real-time performance and weather data, allowing engineers to solve problems before they occur.

"Most people look at a road or a bridge and never realise the technology that today's modern transportation agencies are using to help our transportation system function at its best," said Bud Wright, executive director of AASHTO. "State DOTs are dramatically improving the way transportation systems, services, and information are being delivered, shared, and utilised all across the country."

The North Carolina DOT is using 3-D imaging to improve the process of conducting annual pavement condition surveys on the state's 16,000 miles of interstate and primary roadways, using a specially equipped vehicle that takes two sets of images as it passes over a roadway at normal highway speeds. A forward looking camera captures images of the highway while a 3-D camera photographs the pavement.

Many state departments of transportation are also using a user-friendly computer mapping platform dubbed UPlan, a technology which combines and displays real-time information from data banks, both inside and outside transportation agencies, in the form of maps. These multilayered displays make it easy to see the many ways proposed transportation projects will interface with the surrounding environment.

DOTs including Minnesota, Nevada, Kentucky and Florida have installed sensors on bridges to monitor structural health, measure the movement, shrinkage, and cracking of concrete, or provide data on vibration and corrosion and activate anti-icing systems, alert authorities when secure areas have been breached and detect bridge strikes.

The Oklahoma Department of Transportation and Oklahoma Department of Public Safety have teamed up to more efficiently process permit requests and create safe routes for commercial trucks carrying oversized or overweight loads. The Oklahoma permitting and routing optimisation system, OKiePROS, uses advanced GPS technology and real-time geographic and bridge information to quickly process requests on-line. Permits for oversized or overweight truck loads which used to take several days to issue, can now be processed in about ten minutes.

The 6174 Louisiana Department of Transportation and Development has also turned to smart technology to help it more easily locate compaction problems in new road construction projects. The Roller Integrated Compaction Monitoring system, which uses GPS technology, has the capability to measure continuous stretches of roadway, allowing contractors to find and fix problems fast.

In an effort to minimise traffic congestion and improve safety, the 1747 Virginia Department of Transportation is in the process of deploying an active traffic management (ATM) system to integrate information from a wide range of sources including cameras, pavement sensors, and driver input.

In Alaska, extreme winter weather can occur quickly, which is why the Alaska Department of Transportation and Public Facilities (ADOT&PF) is equipping its fleet of maintenance vehicles with instruments to gather location-specific temperature and humidity data along roadways. The data are fed to a weather modelling system, which can forecast when and where roadway icing is likely to occur.

ADOT&PF is also using smart technology on one of the most isolated roads in the US to monitor and analyse an enormous, moving, formation of frozen soil, rock and ice that, if left unchecked, could block and/or damage the highway.

Related Content

  • September 10, 2014
    Esri helps UDOT consolidate maps into single platform
    Utah Department of Transportation (UDOT) has launched a new website that consolidates hundreds of traffic and infrastructure maps on a single platform, following an open government initiative touted by the state. “Utah views transportation infrastructure as the property of its citizens,” said Terry Bills, global transportation industry manager for Esri. “They paid the bills. They should be able to access this type of information.
  • August 10, 2020
    Lufft sensors help German smart city
    Using data can increase efficiency. Jerg Theurer of Mhascaro explains how one German town is becoming a smart city – with some help from Lufft sensors in a winter roads project
  • April 29, 2015
    NOCoE delivers data for diligent DOTs
    David Crawford talks to Dennis Motiani about the role of the new National Operations Centre of Excellence. Consolidating the collective experience of the US transportation system’s management and operations (TSM&O) community, streamlining its information gathering, while cutting research times and costs are the key drivers behind the country’s new National Operations Centre of Excellence (NOCoE). Launched in January at the annual meeting of the Transportation Research Board (TRB), this sets out to be a sin
  • May 3, 2012
    Cost saving multi-agency transportation and emergency management
    Although the recession had dramatically reduced traffic volumes in the past few years, the economy was on the brink of a recovery that portended well for jobs but poorly for traffic congestion. Leaders of four government agencies in Houston, Texas, got together to discuss how to collectively cope with the expected increase in vehicles on the road. "They knew they couldn't pour enough concrete to solve the problem, and they also knew the old model of working in a vacuum as standalone entities would fail," sa