Skip to main content

Siemens to equip Turkey’s suspension bridge with traffic control technology

Siemens is to supply the traffic control system for the world’s fourth longest suspension bridge, to be built between Istanbul and Izmir in Turkey. Siemens will be responsible for the development, installation and commissioning of all components and systems for the traffic control technology, including the traffic control system, monitoring technology and components for the technical infrastructure such as communication and camera equipment, energy supply, lighting and ventilation. Siemens will also supply
September 28, 2012 Read time: 2 mins
189 Siemens is to supply the traffic control system for the world’s fourth longest suspension bridge, to be built between Istanbul and Izmir in Turkey.

Siemens will be responsible for the development, installation and commissioning of all components and systems for the traffic control technology, including the traffic control system, monitoring technology and components for the technical infrastructure such as communication and camera equipment, energy supply, lighting and ventilation.

Siemens will also supply components for the technical infrastructure, such as camera surveillance technology and emergency call control centres, together with the complete lighting system for the bridge. A SCADA (Supervisory Control and Data Acquisition) system will be used for the process monitoring and control of the system.

The six-lane bridge is almost three kilometers long and is part of a major free way project designed to cut the travel time between both cities from eight to four hours. The new freeway will also relieve inner-city traffic congestion in Istanbul. The newly constructed highway will shift the traffic to the Istanbul suburbs and lessen congestion in the city centre.  Commissioning is scheduled for 2015.

For more information on companies in this article

Related Content

  • Communications hold key to expanding ITS wireless network expansion
    December 21, 2017
    Wireless transmission of data and control information is making smarter traffic management easier and cheaper to install. It has long been known that connectivity is the key to improving traffic management and many cost-benefit studies prove that investment in new technology can be justified in terms of reduced congestion, shorter travel times, improved safety and air quality. However, many authorities’ cap-ex budgets only cover urgent matters, not improvements, making it difficult, if not impossible to
  • Smart Cities: a journey, not a destination
    June 30, 2021
    As technologies evolve, cities of the future should prepare for expansion by establishing scal­able systems, suggest Benjamin Ho and James Birdsall of Parsons
  • Sony helps Rio get a better view of the Olympics
    June 29, 2016
    With the Olympics approaching, Sony’s Stephane Clauss examines how the latest camera technologies can help cities cope with the huge crowds attending major events. This August will see more than 10,000 athletes head to Rio de Janeiro for the Olympics Games. Alongside them will be their coaching staff, a hoard of logistics teams, thousands of volunteer marshals (London 2012 had 70,000) and millions of spectators. All such major events have nervous jitters on the way to the opening ceremony. This year has see
  • Spot speed deterrent proved to be transient
    October 18, 2013
    As research and trials show the benefits of average speed enforcement - David Crawford reviews developments on two continents. August 2013 saw the switch on of the Australian State of Victoria’s latest combined point-to-point (P2P) average speed enforcement (ASE) and spot camera control system. Installed on the 27km Peninsula Link to the south-east of Melbourne, the system uses high-resolution automatic number plate recognition (ANPR) cameras and optical character recognition (OCR) technology developed b