Skip to main content

New York DOT installs Sensys adaptive traffic control

In a bid to improve traffic flow, New York Department of Transportation (NYDOT) has installed Sensys Networks’ ACS Lite wireless traffic sensors on several streets in the city. ACS Lite is designed to provide adaptive technologies to arterial applications, calculating slight adjustments to timing patterns to optimise traffic through arterial flows. "The sensors will help with another system adapt to the times of the signal so they will change quicker and be more responsible to the current conditions," said
January 14, 2013 Read time: 2 mins
In a bid to improve traffic flow, New York Department of Transportation (NYDOT) has installed 119 Sensys Networks’ ACS Lite wireless traffic sensors on several streets in the city.
 
ACS Lite is designed to provide adaptive technologies to arterial applications, calculating slight adjustments to timing patterns to optimise traffic through arterial flows.
"The sensors will help with another system adapt to the times of the signal so they will change quicker and be more responsible to the current conditions," said Sensys Networks’ Ed Davis.

The sensors gather information as each car passes by, about traffic volume and speed; transmitting it to receivers that will work with traffic lights to change as required, unlike the current signal timing system, which changes at the same time throughout the day, regardless of the volume of traffic.

"We send a signal back to the traffic signal cabinet and determine what the best cycle length will be so it will adjust the timing of the signal based on the timing of the demand," Davis said.

For more information on companies in this article

Related Content

  • San Antonio GPS-based BRT gets the green light
    December 20, 2012
    San Antonio, Texas, is launching a new GPS-based bus rapid transit system (BRT) that keeps San Antonio’s new VIA Primo bus fleet on-schedule with minimal impact on individual traffic flow. Siemens Road and City Mobility business has worked together with Trapeze Group to create a new transit signal priority (TSP) solution that they say is the first of its kind to use a ‘virtual’ GPS-based detection zone for transit vehicle traffic management without the need for physical detector equipment at the intersectio
  • New York’s MTA tests new safety technology on buses
    October 5, 2015
    As part of the MTA’s ongoing commitment to improving safety across all agencies and in coordination with New York City’s Vision Zero plan, MTA New York City Transit has begun to test new technologies aimed at improving safety for drivers, bus customers and pedestrians. The 60-day tests of pedestrian turn warning and collision avoidance systems will determine if a full pilot of one or both systems can proceed in 2016. NYC Transit’s Department of Buses is testing two systems on six buses: a pedestrian turn
  • GPS delivers accurate journey time data for UTC
    January 27, 2012
    A new solution developed as a consequence of the UK's Freeflow project fuses GPS and UTC loop data to give more accurate predictions of journey times, benefting network managers and travellers alike. By Matt Cowley and Gareth Jones, Trakm8 and John Polak and Rajesh Krishnan, Imperial College London
  • Australia's ground breaking average speed enforcement
    February 1, 2012
    The speed enforcement system on the Hume Highway in Australia combines both spot and point-to-point solutions. Here, Redflex's Peter Whyte discusses its implementation. The Australian State of Victoria has achieved notable success in reducing casualty rates since launching a three-pronged road accident prevention initiative in the late-1980s.