Skip to main content

New York DOT installs Sensys adaptive traffic control

In a bid to improve traffic flow, New York Department of Transportation (NYDOT) has installed Sensys Networks’ ACS Lite wireless traffic sensors on several streets in the city. ACS Lite is designed to provide adaptive technologies to arterial applications, calculating slight adjustments to timing patterns to optimise traffic through arterial flows. "The sensors will help with another system adapt to the times of the signal so they will change quicker and be more responsible to the current conditions," said
January 14, 2013 Read time: 2 mins
In a bid to improve traffic flow, New York Department of Transportation (NYDOT) has installed 119 Sensys Networks’ ACS Lite wireless traffic sensors on several streets in the city.
 
ACS Lite is designed to provide adaptive technologies to arterial applications, calculating slight adjustments to timing patterns to optimise traffic through arterial flows.
"The sensors will help with another system adapt to the times of the signal so they will change quicker and be more responsible to the current conditions," said Sensys Networks’ Ed Davis.

The sensors gather information as each car passes by, about traffic volume and speed; transmitting it to receivers that will work with traffic lights to change as required, unlike the current signal timing system, which changes at the same time throughout the day, regardless of the volume of traffic.

"We send a signal back to the traffic signal cabinet and determine what the best cycle length will be so it will adjust the timing of the signal based on the timing of the demand," Davis said.

Related Content

  • Inrix aids authorities in dealing with data
    August 18, 2015
    New traffic data products and services have been launched to aid transport and urban planners and business with detailed intelligence on journey patterns, reports Jon Masters. Manual travel surveys ought soon to become a thing of the past for transport planners and the business community. The technology now exists for getting sophisticated levels of traffic and trip data from connected vehicles. Cars and commercial fleets carrying a GPS device, or a mobile phone or smartphone are the sources of the informat
  • Development of cooperative driving applications for work zones
    July 17, 2012
    The German AKTIV project is researching several cooperative driving applications for use in work zones. PTV's Michael Ortgiese details progress. The steep increases in traffic volumes predicted back in the early 1990s have unfortunately been proven to be more than accurate. In Germany, the AKTIV project continues to look into cooperative technologies' potential to reduce the impact of those increased traffic volumes and keep traffic moving despite limitations in infrastructure capacity.
  • Less travel aggravation to blunt Aggieland fans’ motivation
    June 17, 2016
    Returning travel times to normal within two hours of the end of a major football game was the challenge facing College Station, Adam Lyons explains how this was achieved. College Station, TX, also known as ‘Aggieland’, is located right in the middle of the Dallas/Fort Worth, San Antonio and Houston triangle making the city accessible to over 14 million Texans within less than a four-hour drive. One of the biggest draws to this area is Texas A&M University (TAMU) and the Aggie football games in the fall, mea
  • Upgrading New Yorks's traffic signal timings
    February 28, 2013
    The New York City Department of Transportation instituted the Midtown in Motion project to promote multimodal mobility in the Midtown Core of Manhattan, a 110 square block area or “zone” from Second to Sixth Avenue and 42nd to 57th Street. Control extended from 86th Street to 23rd Street, focused on the core zone. MiM provides signal timing changes on two levels: Level 1 control starts from a pre-stored library of timing plans. These are designed offline and are relevant to arterials inside the Midtown stud