Skip to main content

New York DOT installs Sensys adaptive traffic control

In a bid to improve traffic flow, New York Department of Transportation (NYDOT) has installed Sensys Networks’ ACS Lite wireless traffic sensors on several streets in the city. ACS Lite is designed to provide adaptive technologies to arterial applications, calculating slight adjustments to timing patterns to optimise traffic through arterial flows. "The sensors will help with another system adapt to the times of the signal so they will change quicker and be more responsible to the current conditions," said
January 14, 2013 Read time: 2 mins
In a bid to improve traffic flow, New York Department of Transportation (NYDOT) has installed 119 Sensys Networks’ ACS Lite wireless traffic sensors on several streets in the city.
 
ACS Lite is designed to provide adaptive technologies to arterial applications, calculating slight adjustments to timing patterns to optimise traffic through arterial flows.
"The sensors will help with another system adapt to the times of the signal so they will change quicker and be more responsible to the current conditions," said Sensys Networks’ Ed Davis.

The sensors gather information as each car passes by, about traffic volume and speed; transmitting it to receivers that will work with traffic lights to change as required, unlike the current signal timing system, which changes at the same time throughout the day, regardless of the volume of traffic.

"We send a signal back to the traffic signal cabinet and determine what the best cycle length will be so it will adjust the timing of the signal based on the timing of the demand," Davis said.

Related Content

  • May 2, 2017
    City of Seattle implements SCOOT adaptive traffic management
    Seattle Department of Transportation (SDOT) has implemented a new adaptive traffic control system at 32 intersections along Mercer Street between 3rd Ave W and I-5, which has been one of the city’s most congested corridors for over 40 years. Developed by the UK’s Transport Research Laboratory, the SCOOT (Split Cycle Offset Optimisation Technique) system coordinates the operation of the traffic signals in and around the corridor to help vehicles move more efficiently. SCOOT works in real-time to reduce delay
  • April 19, 2012
    TransCore involved in two ITS New York awards
    TransCore has announced it participated in two winning projects announced at the ITS New York 18th Annual Meeting and Technology Exhibition. Of the six projects to receive awards, TransCore participated in the Outstanding Project of the Year in Traffic Control Systems for Integrated Adaptive Traffic Signal Control Decision Support and the Outstanding Project of the Year in Roadway Management for the New York State Thruway's Woodbury Toll Barrier - Highway Speed E-Z Pass system.
  • March 14, 2012
    Bridging the highway travel information gap
    A new traffic management solution is attempting to bridge the gap in information available on freeways and arterial roadways. Andrew Bardin Williams reports. Agencies responsible for national networks of roads around the world have the ability to measure, analyse and disseminate accurate travel information to drivers. Millions of dollars go into data collection infrastructure to collect traffic congestion and travel time information on major freeways or highways. For example, a driver on the I-210 in the Lo
  • July 19, 2018
    Cost benefit: Toronto retimings tame traffic trauma
    Canada’s largest city reckons that it is saving its taxpayers’ money simply by altering the way traffic lights work. David Crawford reviews Toronto’s ambitious plans to ease congestion Toronto, Canada’s largest metropolis (and the fourth largest in North America), has saved its residents CAN$53 (US$42.4) for every CAN$1 (US$0.80) spent over a 2012-2016 traffic signal retiming programme, according to figures released by its Transportation Services Division. The programme covered 1,275 signals (the city’s