Skip to main content

Mucca demos multi-vehicle collision avoidance tech

A project whose members include Connected Places Catapult and Cranfield University has developed technology which could reduce the number of vehicle collisions on UK motorways.
By Ben Spencer March 26, 2020 Read time: 2 mins
Mucca develops technology to reduce fatalities at UK motorways (Source: MuccA)

The Multi-Car Avoidance (Mucca) research and development project used artificial intelligence and Vehicle to Vehicle (V2V) communications to instruct autonomous vehicles (AVs) to cooperatively make decisions to avoid potential incidents.
 
Mucca partners are hoping the technology will reduce the 4,500 accidents each year on UK motorways and the £8 billion associated costs.

Charlie Wartnaby, technical lead for project partner Applus Idiada (Institute for Applied Automotive Research) UK, says collective collision avoidance between the cars was mediated by V2V radio.
 
“Combining connectivity and automated driving like this has applications beyond the valuable emergency role proven here to more general cooperative vehicle movement, promising enhanced safety and efficiency on our roads in future,” Wartnaby adds.
 
Catapult says the AVs successfully completed replicas of real-life motorway scenarios on test tracks. Once an incident is detected, the vehicles share information by radio links and on-board computers calculate the best manoeuvres to avoid obstacles and safely steer the agreed path to avoid an accident, the company adds.
 
Ross Walker and Icaro Bezerra-Viana, research fellows at Cranfield University, were also involved in the project.
 
Walker explains: “We were able to develop computer algorithms that help the cars to react in a more human-like way when avoiding collisions. This can allow any potential accidents to be recognised in advance, and consequently avoided before they have chance to begin developing.”
 
Bezerra-Viana adds: “Computer simulations enabled us to model how human drivers behave on motorways, and how the proximity of surrounding cars influences their behaviour. The movement of the cars that surround a vehicle over the next few seconds can then be predicted in order to avoid a collision.”
 
Other partners involved in the project include Applus Idiada, Westfield Sports Car and SBD Automotive. It was funded by Innovate UK and the Centre for C/AVs.

Related Content

  • April 22, 2015
    ITS America publishes connected vehicle guidance
    Guidance on the likely impact of multipath communications on connected vehicle development has been published by ITS America. ITS America’s Connected Vehicle Technical Insight looks at the challenges and opportunities wireless interoperability could provide in vehicle applications. In particular the 22-page document examines the processes by which data can be transferred from one vehicle to another (V2V), or between a vehicle and the infrastructure (V2I).
  • July 1, 2015
    Here to lead vehicle hazard warning pilot in Finland
    Mapping and navigation specialist Here has been selected by Finnish traffic agencies Finnish Transport Agency (FTA) and Trafi, the Finnish Transport Safety Agency to lead a pilot project to enable vehicles to communicate safety hazards to others on the road. Here will also work with traffic information management service company Infotripla in implementing the project, which will be the first to implement a road hazard warning messaging system as described in the Intelligent Transportation Systems (ITS)
  • August 22, 2012
    US DoT launches largest-ever road test of connected vehicle crash avoidance technology
    Nearly 3,000 cars, trucks and buses equipped with connected Wi-Fi technology to enable vehicles and infrastructure to ‘talk’ to each other in real time to help avoid crashes and improve traffic flow, began traversing Ann Arbor's streets yesterday as part of a year-long safety pilot project by the US Department of Transportation. Ray LaHood, US Transportation Secretary, joined elected officials and industry and community leaders on the University of Michigan campus to launch the second phase of the Safety Pi
  • March 30, 2020
    Autopilot highlights shape of Things
    Driverless vehicles require rich data to operate safely, and a European consortium is harnessing the Internet of Things to help.