Skip to main content

Mucca demos multi-vehicle collision avoidance tech

A project whose members include Connected Places Catapult and Cranfield University has developed technology which could reduce the number of vehicle collisions on UK motorways.
By Ben Spencer March 26, 2020 Read time: 2 mins
Mucca develops technology to reduce fatalities at UK motorways (Source: MuccA)

The Multi-Car Avoidance (Mucca) research and development project used artificial intelligence and Vehicle to Vehicle (V2V) communications to instruct autonomous vehicles (AVs) to cooperatively make decisions to avoid potential incidents.
 
Mucca partners are hoping the technology will reduce the 4,500 accidents each year on UK motorways and the £8 billion associated costs.

Charlie Wartnaby, technical lead for project partner Applus Idiada (Institute for Applied Automotive Research) UK, says collective collision avoidance between the cars was mediated by V2V radio.
 
“Combining connectivity and automated driving like this has applications beyond the valuable emergency role proven here to more general cooperative vehicle movement, promising enhanced safety and efficiency on our roads in future,” Wartnaby adds.
 
Catapult says the AVs successfully completed replicas of real-life motorway scenarios on test tracks. Once an incident is detected, the vehicles share information by radio links and on-board computers calculate the best manoeuvres to avoid obstacles and safely steer the agreed path to avoid an accident, the company adds.
 
Ross Walker and Icaro Bezerra-Viana, research fellows at Cranfield University, were also involved in the project.
 
Walker explains: “We were able to develop computer algorithms that help the cars to react in a more human-like way when avoiding collisions. This can allow any potential accidents to be recognised in advance, and consequently avoided before they have chance to begin developing.”
 
Bezerra-Viana adds: “Computer simulations enabled us to model how human drivers behave on motorways, and how the proximity of surrounding cars influences their behaviour. The movement of the cars that surround a vehicle over the next few seconds can then be predicted in order to avoid a collision.”
 
Other partners involved in the project include Applus Idiada, Westfield Sports Car and SBD Automotive. It was funded by Innovate UK and the Centre for C/AVs.

Related Content

  • Advanced Driver Assistance Systems: a solution or another problem?
    November 27, 2013
    Do Advanced Driver Assistance Systems represent a positive step forward for safety, or something of a safety risk? Jason Barnes discusses the issue with leading industry figures. Advanced Driver Assistance Systems (ADAS) are already common. Anti-lock brakes or electronic stability control are well understood and are either fitted as standard or frequently requested by new vehicle buyers. More advanced ADAS features are appearing on many top-end vehicles and the trickle-down has already started. Adaptive
  • SafeRide: it’s time to act on cyberattacks
    May 10, 2019
    Cyber threats are increasing rapidly and conventional security measures are unable to keep up. Ben Spencer talks to SafeRide’s Gil Reiter about what OEMs can do now As more vehicles become connected, so the potential threats to their security increase. Gil Reiter, vice president of product management for security firm SafeRide, says the biggest ‘attack surface’ for connected cars is their internet connectivity - and the in-vehicle applications that use the internet connection. “The most vulnerable co
  • OpenSpace visualises how social distancing will work
    May 26, 2020
    OpenSpace CEO Nicolas Le Glatin tells Adam Hill how Xovis camera tech might help unlock more convenient ways for moving through mobility hubs during Covid-19
  • Cubic: predictive analytics is putting fortune tellers out of business
    November 23, 2018
    The rise of machine learning and artificial intelligence means that fortune tellers will soon be out of business. Ed Chavis takes a behind the scenes look at the world of predictive analytics ver since organisations started taking advantage of insights derived from Big Data, data scientists concentrated their efforts on the ability to make correct assumptions about the future. A few years later, with the help of automation, developments in machine learning (ML) and advancements in the application of a