Skip to main content

Mucca demos multi-vehicle collision avoidance tech

A project whose members include Connected Places Catapult and Cranfield University has developed technology which could reduce the number of vehicle collisions on UK motorways.
By Ben Spencer March 26, 2020 Read time: 2 mins
Mucca develops technology to reduce fatalities at UK motorways (Source: MuccA)

The Multi-Car Avoidance (Mucca) research and development project used artificial intelligence and Vehicle to Vehicle (V2V) communications to instruct autonomous vehicles (AVs) to cooperatively make decisions to avoid potential incidents.
 
Mucca partners are hoping the technology will reduce the 4,500 accidents each year on UK motorways and the £8 billion associated costs.

Charlie Wartnaby, technical lead for project partner Applus Idiada (Institute for Applied Automotive Research) UK, says collective collision avoidance between the cars was mediated by V2V radio.
 
“Combining connectivity and automated driving like this has applications beyond the valuable emergency role proven here to more general cooperative vehicle movement, promising enhanced safety and efficiency on our roads in future,” Wartnaby adds.
 
Catapult says the AVs successfully completed replicas of real-life motorway scenarios on test tracks. Once an incident is detected, the vehicles share information by radio links and on-board computers calculate the best manoeuvres to avoid obstacles and safely steer the agreed path to avoid an accident, the company adds.
 
Ross Walker and Icaro Bezerra-Viana, research fellows at Cranfield University, were also involved in the project.
 
Walker explains: “We were able to develop computer algorithms that help the cars to react in a more human-like way when avoiding collisions. This can allow any potential accidents to be recognised in advance, and consequently avoided before they have chance to begin developing.”
 
Bezerra-Viana adds: “Computer simulations enabled us to model how human drivers behave on motorways, and how the proximity of surrounding cars influences their behaviour. The movement of the cars that surround a vehicle over the next few seconds can then be predicted in order to avoid a collision.”
 
Other partners involved in the project include Applus Idiada, Westfield Sports Car and SBD Automotive. It was funded by Innovate UK and the Centre for C/AVs.

Related Content

  • Europe’s road safety gains have stagnated EU
    March 17, 2017
    Europe will fail to meet its road death targets as enforcement budgets are slashed and drivers face an epidemic of distractions. The European Union will not achieve its aim of halving the number of people killed on its roads each year by 2020, delegates to Tispol’s (the organisation of European traffic police) annual conference in Manchester were told. “The target will be missed because there was only a 17% decrease in road fatalities across Europe between 2010 and 2015 when [the rate of reduction] should h
  • Aptiv: we need overhaul of AV nervous system
    August 20, 2019
    Autonomous vehicles are changing a lot of things: Aptiv’s Christian Schäfer suggests that we need to look again at traditional approaches to vehicle architecture to find viable options for the future
  • USDoT looks at the costs and potential benefits of connected vehicles
    October 26, 2017
    David Crawford looks at latest lessons learned from the trials of connected vehicles in the US. The progress of connected vehicle (CV) technologies takes centre stage among the hot topics highlighted in the September 2017 edition – the first since 2014 – of the ‘ITS Benefits, Costs and Lessons Learned’ survey from the US ITS Joint Program Office (JPO). The organisation is an arm of the US Department of Transportation (USDoT).
  • US university investigates smart car tyres
    January 15, 2016
    Researchers at Virginia Tech, Penn State University, and 12 industry partners are collaborating on a US$1.2 million National Science Foundation-funded project to integrate sensors into car tyres, with the aim of providing information on the vehicle’s speed and road conditions. Saied Taheri, an associate professor of mechanical engineering in Virginia Tech’s College of Engineering and the director of the Center for Tire Research (CenTiRe), is the project’s lead investigator. Taheri has been working for