Skip to main content

Mucca demos multi-vehicle collision avoidance tech

A project whose members include Connected Places Catapult and Cranfield University has developed technology which could reduce the number of vehicle collisions on UK motorways.
By Ben Spencer March 26, 2020 Read time: 2 mins
Mucca develops technology to reduce fatalities at UK motorways (Source: MuccA)

The Multi-Car Avoidance (Mucca) research and development project used artificial intelligence and Vehicle to Vehicle (V2V) communications to instruct autonomous vehicles (AVs) to cooperatively make decisions to avoid potential incidents.
 
Mucca partners are hoping the technology will reduce the 4,500 accidents each year on UK motorways and the £8 billion associated costs.

Charlie Wartnaby, technical lead for project partner Applus Idiada (Institute for Applied Automotive Research) UK, says collective collision avoidance between the cars was mediated by V2V radio.
 
“Combining connectivity and automated driving like this has applications beyond the valuable emergency role proven here to more general cooperative vehicle movement, promising enhanced safety and efficiency on our roads in future,” Wartnaby adds.
 
Catapult says the AVs successfully completed replicas of real-life motorway scenarios on test tracks. Once an incident is detected, the vehicles share information by radio links and on-board computers calculate the best manoeuvres to avoid obstacles and safely steer the agreed path to avoid an accident, the company adds.
 
Ross Walker and Icaro Bezerra-Viana, research fellows at Cranfield University, were also involved in the project.
 
Walker explains: “We were able to develop computer algorithms that help the cars to react in a more human-like way when avoiding collisions. This can allow any potential accidents to be recognised in advance, and consequently avoided before they have chance to begin developing.”
 
Bezerra-Viana adds: “Computer simulations enabled us to model how human drivers behave on motorways, and how the proximity of surrounding cars influences their behaviour. The movement of the cars that surround a vehicle over the next few seconds can then be predicted in order to avoid a collision.”
 
Other partners involved in the project include Applus Idiada, Westfield Sports Car and SBD Automotive. It was funded by Innovate UK and the Centre for C/AVs.

Related Content

  • April 16, 2013
    NSW university launches high-tech safety study
    Road experts led by Australia’s University of New South Wales (NSW) professor Mike Regan are to conduct what is said to be the most thorough traffic safety study in Australian history. Cameras inside and outside cars will film 400 volunteers in Victoria and New South Wales in an effort to analyse the cause of crashes and change driver education and road safety campaigns. The cameras will record how drivers behaved and reacted in ''real world'' situations. John Wall, manager of road safety technology with N
  • November 28, 2013
    Roadside infrastructure key to in-vehicle deployment
    The implementation of in-vehicle systems will require multilateral cooperation, as Honda’s Sue Bai explains to Colin Sowman. Vehicle manufacturers will shape the future direction of in-vehicle ITS systems, but they can’t do it on their own. So to find out what they see on the horizon, and the obstacles they face, ITS International spoke to Sue Bai, principal engineer in the Automobile Technology Research Department with Honda R&D Americas. Not only does she play an important role in Honda’s US-based ITS
  • April 14, 2021
    Verizon and Honda work on 5G at Mcity
    Companies team up with University of Michigan on mobile edge computing and 5G
  • June 18, 2015
    Land Rover demonstrates remote-control Range Rover Sport
    Jaguar Land Rover, part of the UK Autodrive consortium, has demonstrated a remote control Range Rover Sport research vehicle, showing how a driver could drive the vehicle from outside the car via their smartphone. The smartphone app includes control of steering, accelerator and brakes as well as changing from high and low range. This would allow the driver to walk alongside the car, at a maximum speed of 4mph, to manoeuvre their car out of challenging situations safely, or even to negotiate difficult off