Skip to main content

Mobile LiDAR technology used to capture traffic signal data across Pennsylvania

Engineering, planning and consulting services company Michael Baker International recently completed a nearly US$7-million project for the Pennsylvania Department of Transportation (PennDOT) to collect data from more than 8,600 traffic signals across the state. Over a year, the Michael Baker team, working with PennDOT’s Traffic Signal Asset Management System (TSAMS), collected nearly 20 million data fields for each of the 8,623 traffic signals analysed, which populated a centralised database to support Pen
November 30, 2016 Read time: 2 mins
Engineering, planning and consulting services company Michael Baker International recently completed a nearly US$7-million project for the 6111 Pennsylvania Department of Transportation (PennDOT) to collect data from more than 8,600 traffic signals across the state.  Over a year, the Michael Baker team, working with PennDOT’s Traffic Signal Asset Management System (TSAMS), collected nearly 20 million data fields for each of the 8,623 traffic signals analysed, which populated a centralised database to support PennDOT’s future planning, design, maintenance and operational decision making.
 
With the passage of Pennsylvania Act 89 in 2013, PennDOT identified traffic signals as an area of necessary investment and established the Green Light-Go (GLG) program to manage the dedicated traffic signal funding and corresponding maintenance and operations projects

Michael Baker’s fleet of LiDAR-equipped vehicles are capable of surveying an area by measuring the distance to a target by illuminating it with two laser lights, each of which can measure up to 600,000 points per second with a total maximum measurement frequency of 1,200,000 points per second. The firm’s LiDAR equipped vans collected all visible assets to minimise traffic disruption and prevented technicians from working in traffic lanes.
 
Mobile LiDAR equipped vans collected data from exposed traffic signal infrastructure assets, mapping entire intersections in three-dimensional point clouds, while corresponding spherical imagery was collected using a ladybug camera.

Data from traffic signal cabinet assets was collected by field staff using a project-specific iPad mobile application (app). Electronic files of traffic signal records were transferred and attached to the database and pertinent filed paper documents were scanned to retrieve information electronically.

For more information on companies in this article

Related Content

  • Indra implements ITS technology on Mexico’s Guadalajara-Tepic motorways
    May 22, 2012
    The leading road concessionaire in Mexico, Ideal, has awarded Spanish multinational Indra a US$21.67 million contract for implementing its technology in the three motorways that make up what is known as Mexico's South Pacific Package for the amount of €17 million. The project consists of implementing the ITS as well as the tolls and electronic tolls on the motorway that connects the cities of Tepic and Guadalajara, the second most important in Mexico, as well as in the beltways of both cities.
  • IR’s invisible benefit for traffic surveillance and enforcement
    June 30, 2016
    Advances in vision technology are enhancing traffic surveillance and enforcement applications. Variable lighting conditions have long been a stumbling block for vision technology applications in the transport sector. With applications such as ANPR, the read-rate may vary between daylight and night and can be adversely affected by glare and low sun. Madrid, Spain-based Lector Vision had these considerations in mind when designing its Traffic Eye ANPR system, which combines off-the-shelf and custom hardware
  • Commsignia stops AVs behaving badly
    May 16, 2022
    Cybersecurity concerns surrounding autonomous vehicles create uncertainty but Commsignia has set out to win trust by combating ‘misbehaviour’ attacks, finds Ben Spencer
  • New system expedites border crossings
    October 28, 2016
    Enforcing border controls can create long queues for travellers, David Crawford looks at potential solutions. Long delays at border crossings in both North America and Europe have sparked the development of new queue visualisation and management technologies that are cutting hours, even days, off international passenger and freight journeys. At the westernmost end of the 2,019km (1,250 mile) Mexico–US frontier, two parallel crossings between Tijuana, in the former country, and the border city of San Diego,