Skip to main content

Microsoft research aims to predict traffic jams

Microsoft Research is working with Federal University of Minas Gerais in Brazil to tackle the problem of traffic jams. The immediate objective of this research is to predict traffic conditions over the next 15 minutes to an hour, so that drivers can be forewarned of likely traffic snarls. The Traffic Prediction Project plans to combine all available traffic data, including both historic and current information gleaned from transportation departments, Bing traffic maps, road cameras and sensors and the so
April 9, 2015 Read time: 2 mins
Microsoft Research is working with Federal University of Minas Gerais in Brazil to tackle the problem of traffic jams. The immediate objective of this research is to predict traffic conditions over the next 15 minutes to an hour, so that drivers can be forewarned of likely traffic snarls.

The Traffic Prediction Project plans to combine all available traffic data, including both historic and current information gleaned from transportation departments, Bing traffic maps, road cameras and sensors and the social networks of the drivers themselves, to create a solution that gets motorists from point A to point B with minimal stop-and-go. The use of historic data and information from social networks are both unique aspects of the project.

By using algorithms to process all these data, the project team intends to predict traffic jams accurately so that drivers can make smart, real-time choices, like taking an alternative route, using public transit, or maybe even just postponing a trip. The predictions should also be invaluable to traffic planners, especially when they are working to accommodate traffic from special events and when planning for future transportation needs.

To date, the researchers have tested their prediction model in some of the world’s most traffic-challenged cities: New York, Los Angeles, London and Chicago. The model achieved a prediction accuracy of 80 percent, and that was based on using only traffic-flow data. The researchers expect the accuracy to increase to 90 per cent when traffic incidents and data from social networks are folded in.

Related Content

  • Seleta Reynolds: 'Set a vision, listen to your people & then get out of their way'
    September 12, 2022
    Los Angeles, host of the 2022 ITS World Congress, is a city where the only constant is change, says Seleta Reynolds of LA Metro. Adam Hill finds out about leadership, dream jobs and the 2028 Olympics...
  • Traffic management: risky business
    June 15, 2023
    Adding a real-time accident risk layer to the profile of a road network ticks all the crucial boxes: it saves time, fuel, money and, ultimately, lives. Harriet King of Valerann explains the brain power of Lanternn by Valerann’s Core Fusion Engine...
  • TEXpress adds reversible managed lanes
    April 19, 2017
    Land availability restrictions and tidal traffic flows have led to the implementation of a novel managed lane configuration in Texas, as Colin Sowman finds out. Dealing with traffic congestion related to the ‘tidal flows’ caused by large numbers of commuters making their way into major business hubs in the morning and returning to the suburbs in the evening, has seen the widespread use of adaptive signal timing and even reversible lanes.
  • Ford, MIT project measures pedestrian traffic, predict demand for electric shuttles
    July 28, 2016
    Ford Motor Company and the Massachusetts Institute of Technology are collaborating on a new research project that measures how pedestrians move in urban areas to improve certain public transportation services, such as ride-hailing and point-to-point shuttles services. The project will introduce a fleet of on-demand electric vehicle shuttles that operate on both city roads and campus walkways on the university’s campus. The vehicles use LiDAR sensors and cameras to measure pedestrian flow, which ultimate