Skip to main content

Hella showcases solutions to advance autonomous driving

To enable higher levels of autonomous driving and allow OEMs and drivers the freedom to create more customized vehicles, Hella is showcasing its multifunctional sensor at the North American International Auto show 2018, in Detroit. The solution comes with three detection functions based on its environmental awareness capabilities. Called Structural Health and Knock Emission (Shake) sensor, it has been upgraded to recognise structure-borne sound waves generated by contact or knocks on its body through
January 16, 2018 Read time: 2 mins

To enable higher levels of autonomous driving and allow OEMs and drivers the freedom to create more customized vehicles, 226 Hella is showcasing its multifunctional sensor at the North American International Auto show 2018, in Detroit. The solution comes with three detection functions based on its environmental awareness capabilities.

Called Structural Health and Knock Emission (Shake) sensor, it has been upgraded to recognise structure-borne sound waves generated by contact or knocks on its body through piezoelectric foil.

Shake’s adaptive impact detection uses two sensors on the front and rear of the vehicle to detect slight touches of other cars or pedestrians to its bumper at speeds up to approximately 12mph. It can also trigger a signal to stop vehicles to prevent further damage as well as detect contact and perform an emergency stop if any collision with obstructions occurs during parking.

The intelligent damage detection identifies the severity as well as the time and place of vehicle damage, including scratches, dents and paint damage. It also creates damage reports for owners and mobility companies, who may use autonomous vehicles in car-sharing applications.

In addition, smart touch detection offers drivers convenience and safety features by enabling them to control the vehicle with the touch of their hand.

Hella’s demo will also present an opportunity for attendees to witness its welcome lighting technologies as well as how lights can project graphics onto the ground, among other functions.

Related Content

  • June 26, 2018
    Hella showcases solutions to advance autonomous driving
    Hella has launched a multifunctional sensor which aims to enable higher levels of autonomous driving and allow OEMs and drivers the freedom to create more customised vehicles. It comes with three detection functions based on its environmental awareness capabilities and has been exhibited at the North American International Auto show 2018, in Detroit. Called Structural Health and Knock Emission (Shake) sensor, it has been upgraded to recognise structure-borne sound waves generated by contact or knocks on it
  • November 12, 2015
    Driver aids make inroads on improving safety
    In-vehicle anti-collision systems continue to evolve and could eliminate some incidents altogether. John Kendall rounds up the current developments. A few weeks ago, I watched a driver reverse a car from a parking bay at right angles to the road, straight into a car driving along the road. The accident happened at walking pace, no-one was hurt and both cars had body panels that regain their shape after a low speed shunt.
  • September 26, 2014
    Ford Mondeo – the car that brakes for pedestrians
    The all-new Ford Mondeo will be equipped with a raft of safety features, including technology that is able to detect people in the road ahead and – if the driver does not respond to warning sounds and displays – automatically applies the brakes. Pedestrian Detection is among a raft of new features and improvements detailed by Ford which enhance the Mondeo. The system is part of the Pre-Collision Assist package that also introduces Active Braking, which can autonomously apply braking to help mitigate rear
  • July 23, 2019
    The rise and rise of robo-car
    When it comes to driverless cars, there are many variables – but one thing is for certain: autonomous driving will have a significant impact on vehicle design, says Andreas Herrmann The transition to autonomous vehicles (AVs) means that many of the factors which have shaped automotive design for the past 130 years no longer apply. At present, the design of a car is largely determined by the anticipated direction of travel: the car’s silhouette immediately shows where the front and back are. Driverless ve