Skip to main content

Finland’s VTT technology miniaturises measuring devices

According to Finland’s VTT Technical Research Centre of Finland, technology developed by the centre makes it possible to miniaturise an entire measuring laboratory to the size of a small sensor. Using the technology, the Fabry project at VTT has developed smart optical measuring devices for uses that include optimisation of vehicle engines, reduction and monitoring of environmental emissions, and quality control of pharmaceuticals. Participants in the Fabry project to develop spectroscopic sensor devi
May 13, 2014 Read time: 2 mins
According to Finland’s 814 VTT Technical Research Centre of Finland, technology developed by the centre makes it possible to miniaturise an entire measuring laboratory to the size of a small sensor.

Using the technology, the Fabry project at VTT has developed Smart optical measuring devices for uses that include optimisation of vehicle engines, reduction and monitoring of environmental emissions, and quality control of pharmaceuticals.

Participants in the Fabry project to develop spectroscopic sensor devices based on novel Fabry-Perot interferometers included 260 Continental Automotive, 536 Sick, 7745 Innopharma Labs, 7746 Ocean Optics, 7747 Murata Electronics, Rikola, 7748 Okmetic and VTT Memsfab.

So far, two of the companies involved have launched new products of their own based on the project results. Rikola of Finland has developed the world’s smallest hyperspectral camera, which can be used for surveying fertilisation and irrigation needs in agricultural areas from unmanned aerial vehicles, while the Irish Innopharma Labs manufactures Eyemap cameras for the pharmaceutical industry.

VTT is also in the process of establishing a spin-off company based on the, which it expects to launch in May 2014.

“Apart from new business operations, optical measurement technology also has an impact on employment. In the long run, this could create dozens, or maybe even hundreds of new jobs in Finland,” says Jarkko Antila, senior scientist at VTT, who has been coordinating the project.

The Fabry-Perot interferometer makes use of multiple reflections between two closely spaced partially silvered surfaces. Part of the light is transmitted each time the light reaches the second surface, resulting in multiple offset beams which can interfere with each other. The large number of interfering rays produces an interferometer with extremely high resolution, somewhat like the multiple slits of a diffraction grating increase its resolution.

For more information on companies in this article

Related Content

  • EarthSense Systems reveals cleaner air routes in city-wide project
    October 13, 2017
    A project has been launched to produce city-wide visualisations of air quality through combining EarthSense Systems' (ESS) ordnance survey (OS) geospatial data and real-time air quality data. The technology, a joint venture between Bluesky and University of Leicester, is being used to highlight areas of higher pollution and allows users to identify cleaner air routes such as parks or canal routes. ESS captures measurements on air quality through using a zephyr sensor and a city-wide network of sensors.
  • Researchers develop remote traffic pollution detection system
    September 19, 2013
    A group of research centres and companies in Madrid has created what is said to be the first infrared and remote system able to detect pollutants from cars on highways up to three lanes. The goal is to be able to conduct a global test of automobile emissions. According to the researchers, the prototype, which is ready to be marketed, can make an intelligent measurement of highway traffic by collecting real-time data on traffic density, emissions and consumption associated with each vehicle, and weather c
  • Urban tunnel replaces viaduct, improves safety
    October 10, 2012
    Earthquake sensors, automatic barriers and real time monitoring systems are all part of a scheme to make a major Seattle traffic artery safer, by taking it underground. Huw Williams reports. Seattle’s metropolitan area of 3.5 million people, like much of the western seaboard of the United States, lies in an earthquake zone. In Seattle’s case, the city and its hinterland sit atop a complex network of interrelated active geological faults capable of severe seismic activity and posing complex considerations fo
  • Programming a smoother commute
    January 18, 2013
    Work being carried out by the University of Toronto’s Intelligent Transportation Systems Centre could have a beneficial effect on the city’s congestion problems. Says Professor Baher Abdulhai of the Centre, "Everybody realises that we have a big congestion problem in Toronto and the scarier part is that it's getting worse, exponentially." One of the solutions he's working on is smarter traffic lights using artificial intelligence to control the flow of traffic. "Each traffic light would learn how to time i