Skip to main content

Finland’s VTT technology miniaturises measuring devices

According to Finland’s VTT Technical Research Centre of Finland, technology developed by the centre makes it possible to miniaturise an entire measuring laboratory to the size of a small sensor. Using the technology, the Fabry project at VTT has developed smart optical measuring devices for uses that include optimisation of vehicle engines, reduction and monitoring of environmental emissions, and quality control of pharmaceuticals. Participants in the Fabry project to develop spectroscopic sensor devi
May 13, 2014 Read time: 2 mins
According to Finland’s 814 VTT Technical Research Centre of Finland, technology developed by the centre makes it possible to miniaturise an entire measuring laboratory to the size of a small sensor.

Using the technology, the Fabry project at VTT has developed Smart optical measuring devices for uses that include optimisation of vehicle engines, reduction and monitoring of environmental emissions, and quality control of pharmaceuticals.

Participants in the Fabry project to develop spectroscopic sensor devices based on novel Fabry-Perot interferometers included 260 Continental Automotive, 536 Sick, 7745 Innopharma Labs, 7746 Ocean Optics, 7747 Murata Electronics, Rikola, 7748 Okmetic and VTT Memsfab.

So far, two of the companies involved have launched new products of their own based on the project results. Rikola of Finland has developed the world’s smallest hyperspectral camera, which can be used for surveying fertilisation and irrigation needs in agricultural areas from unmanned aerial vehicles, while the Irish Innopharma Labs manufactures Eyemap cameras for the pharmaceutical industry.

VTT is also in the process of establishing a spin-off company based on the, which it expects to launch in May 2014.

“Apart from new business operations, optical measurement technology also has an impact on employment. In the long run, this could create dozens, or maybe even hundreds of new jobs in Finland,” says Jarkko Antila, senior scientist at VTT, who has been coordinating the project.

The Fabry-Perot interferometer makes use of multiple reflections between two closely spaced partially silvered surfaces. Part of the light is transmitted each time the light reaches the second surface, resulting in multiple offset beams which can interfere with each other. The large number of interfering rays produces an interferometer with extremely high resolution, somewhat like the multiple slits of a diffraction grating increase its resolution.

Related Content

  • January 11, 2013
    New approach to data handling aids development of smarter cities
    David Crawford has been to the Irish capital to see a potent memorandum of understanding at work. An imaginative collaboration between the world’s largest IT company and one of Europe’s smaller capital cities is demonstrating a new approach to data handling that could have far reaching implications for urban public transport worldwide. A close working relationship between IBM and Dublin City Council (DCC) dates from 2010. The IT giant was looking for a local transport authority as partner for testing IBM’s
  • January 11, 2013
    New approach to data handling aids development of smarter cities
    David Crawford has been to the Irish capital to see a potent memorandum of understanding at work. An imaginative collaboration between the world’s largest IT company and one of Europe’s smaller capital cities is demonstrating a new approach to data handling that could have far reaching implications for urban public transport worldwide. A close working relationship between IBM and Dublin City Council (DCC) dates from 2010. The IT giant was looking for a local transport authority as partner for testing IBM’s
  • August 14, 2017
    VTT to develop ITS in cooperation with ITS Russia
    VTT Technical Research Centre of Finland and ITS Russia are to partner on the development of intelligent transport systems (ITS). The aim of Project CAVLANE is to develop new services, products and standards, particularly for border crossings. Part of the project involves testing ITS services for drivers before and after border crossings, such as queue cautions that are hoped to make traffic flow more smoothly at the Nuijamaa border crossing point and standardised European Union vehicle to vehicle (V2V)
  • March 6, 2018
    Sick release distance sensors for traffic management duties
    Sick has launched two distance sensors with the intention of providing accurate measurement and control duties for traffic management in adverse conditions via high definition distance measurement technology. The devices, according to Sick, are ideal for determining free capacity in truck parking rows, or for automated long-range detection tasks. DT1000 is said to provide distance measurement up to 460 metres on naturally light-coloured objects and 150 metres for matt black. DL1000 comes with a range of