Skip to main content

Finland’s VTT technology miniaturises measuring devices

According to Finland’s VTT Technical Research Centre of Finland, technology developed by the centre makes it possible to miniaturise an entire measuring laboratory to the size of a small sensor. Using the technology, the Fabry project at VTT has developed smart optical measuring devices for uses that include optimisation of vehicle engines, reduction and monitoring of environmental emissions, and quality control of pharmaceuticals. Participants in the Fabry project to develop spectroscopic sensor devi
May 13, 2014 Read time: 2 mins
According to Finland’s 814 VTT Technical Research Centre of Finland, technology developed by the centre makes it possible to miniaturise an entire measuring laboratory to the size of a small sensor.

Using the technology, the Fabry project at VTT has developed Smart optical measuring devices for uses that include optimisation of vehicle engines, reduction and monitoring of environmental emissions, and quality control of pharmaceuticals.

Participants in the Fabry project to develop spectroscopic sensor devices based on novel Fabry-Perot interferometers included 260 Continental Automotive, 536 Sick, 7745 Innopharma Labs, 7746 Ocean Optics, 7747 Murata Electronics, Rikola, 7748 Okmetic and VTT Memsfab.

So far, two of the companies involved have launched new products of their own based on the project results. Rikola of Finland has developed the world’s smallest hyperspectral camera, which can be used for surveying fertilisation and irrigation needs in agricultural areas from unmanned aerial vehicles, while the Irish Innopharma Labs manufactures Eyemap cameras for the pharmaceutical industry.

VTT is also in the process of establishing a spin-off company based on the, which it expects to launch in May 2014.

“Apart from new business operations, optical measurement technology also has an impact on employment. In the long run, this could create dozens, or maybe even hundreds of new jobs in Finland,” says Jarkko Antila, senior scientist at VTT, who has been coordinating the project.

The Fabry-Perot interferometer makes use of multiple reflections between two closely spaced partially silvered surfaces. Part of the light is transmitted each time the light reaches the second surface, resulting in multiple offset beams which can interfere with each other. The large number of interfering rays produces an interferometer with extremely high resolution, somewhat like the multiple slits of a diffraction grating increase its resolution.

For more information on companies in this article

Related Content

  • Moxa provides clear vision for Caldecott Tunnel’s Fourth Bore
    September 15, 2014
    Caldecott Tunnel’s new Fourth Bore is utilising a bespoke high-capacity monitoring and communications network from Moxa. The Caldecott Tunnel connects Contra Costa and Alameda counties in Northern California and traditionally it has suffered severe congestion - especially during peak hours. Opened in 1937 as a twin-bore arrangement, by 1964 the increase in traffic volumes led to a third bore being added. Shortly after the third bore was opened a tidal flow was introduced with the centre bore alternating in
  • Reducing congestion with Tomtom's historical traffic data
    December 5, 2012
    Historical traffic data provided by TomTom is being used by the local government in Spain’s Basque region to reduce road congestion at less cost. Old habits die hard. Photos from as far back as the 1930s show people counting cars by the roadside in order to provide congestion data to those running road networks. Today, such techniques are still used, albeit augmented by a range of automation technologies such as inductive loops, infra-red sensors and number plate recognition. Even with these advances, howe
  • Measuring alertness to avert drowsy driver incidents
    December 21, 2015
    Falling asleep at the wheel is the primary cause in thousands of deaths on American and other roads, with truck drivers the most at-risk group. David Crawford investigates measures to counter drowsy driving.
  • Continental launches sensor to adjust vehicle height
    August 28, 2018
    German manufacturer Continental says its Ultrasonic Height and Pressure Sensor (UHPS) can adjust the height of commercial vehicles electronically to improve the efficiency of urban buses. The company says UHPS allows drivers to control the air springs when lowering one side of the bus at bus stops - rather than having to let the air out from the spring completely. UHPS uses ultrasound to measure the height and pressure in the air spring and sends the value of the electronic control unit, which automatic