Skip to main content

Finland’s VTT technology miniaturises measuring devices

According to Finland’s VTT Technical Research Centre of Finland, technology developed by the centre makes it possible to miniaturise an entire measuring laboratory to the size of a small sensor. Using the technology, the Fabry project at VTT has developed smart optical measuring devices for uses that include optimisation of vehicle engines, reduction and monitoring of environmental emissions, and quality control of pharmaceuticals. Participants in the Fabry project to develop spectroscopic sensor devi
May 13, 2014 Read time: 2 mins
According to Finland’s 814 VTT Technical Research Centre of Finland, technology developed by the centre makes it possible to miniaturise an entire measuring laboratory to the size of a small sensor.

Using the technology, the Fabry project at VTT has developed Smart optical measuring devices for uses that include optimisation of vehicle engines, reduction and monitoring of environmental emissions, and quality control of pharmaceuticals.

Participants in the Fabry project to develop spectroscopic sensor devices based on novel Fabry-Perot interferometers included 260 Continental Automotive, 536 Sick, 7745 Innopharma Labs, 7746 Ocean Optics, 7747 Murata Electronics, Rikola, 7748 Okmetic and VTT Memsfab.

So far, two of the companies involved have launched new products of their own based on the project results. Rikola of Finland has developed the world’s smallest hyperspectral camera, which can be used for surveying fertilisation and irrigation needs in agricultural areas from unmanned aerial vehicles, while the Irish Innopharma Labs manufactures Eyemap cameras for the pharmaceutical industry.

VTT is also in the process of establishing a spin-off company based on the, which it expects to launch in May 2014.

“Apart from new business operations, optical measurement technology also has an impact on employment. In the long run, this could create dozens, or maybe even hundreds of new jobs in Finland,” says Jarkko Antila, senior scientist at VTT, who has been coordinating the project.

The Fabry-Perot interferometer makes use of multiple reflections between two closely spaced partially silvered surfaces. Part of the light is transmitted each time the light reaches the second surface, resulting in multiple offset beams which can interfere with each other. The large number of interfering rays produces an interferometer with extremely high resolution, somewhat like the multiple slits of a diffraction grating increase its resolution.

For more information on companies in this article

Related Content

  • Study reveals in-car devices aid positive changes to driver behaviour
    December 3, 2012
    The results of a four-year study by the Field Operational Tests of Aftermarket and Nomadic devices in Vehicles (TeleFOT) Consortium were presented at a recent conference in Brussels. The study focused on the assessment of the impact of driver support functions provided by in-vehicle aftermarket and nomadic devices on driving and driver behaviour. Coordinated by the Technical Research Centre of Finland (VTT) and with a budget of US$19.5 million, the four-year TeleFOT project is one of the biggest traffic IC
  • Hot spot detector prevents road tunnel fires
    December 9, 2013
    Sick’s new hot spot detector system proved its worth only one week after being installed by preventing a fire in the Karawanks Tunnel, Austria. A semi-trailer truck with a wheel temperature exceeding 200 degrees centigrade triggered the alarm as it passed the hot spot detector. Closer inspection indicated that in addition to the overheated brake, the vehicle was also travelling with two cracked brake discs. Developed by Sick’s Swiss subsidiary ECTN and based on the Sick LMS511 laser sensor with the T
  • Smart cameras offer real-time alerts
    April 10, 2014
    Intelligent traffic cameras open up a host of possibilities for traffic planners and controllers alike. If traffic management centres (TMCs) around the world are to cope with the increasing demands of growing traffic flows while maintaining or improving transport safety and efficiency, then video monitoring will have to be supplemented by automated warnings of incidents or deviations. According to Patrik Anderson, business development director at Swedish camera manufacturer Axis Communications, it is no
  • Doha implements traffic control system
    November 21, 2012
    Expansion of ITS systems has accelerated in Qatar this year, with rapid deployment of a traffic control system in Doha. Less than 10 years from now an extensive system of ITS technology will be operating in Qatar, informing and directing users of the country’s roads. That can be stated with confidence for a number of reasons: the world’s richest country per capita will host the World Cup in 2022 and is understood to be planning to develop sophisticated systems of ITS for road safety and traffic managemen