Skip to main content

Finland’s VTT technology miniaturises measuring devices

According to Finland’s VTT Technical Research Centre of Finland, technology developed by the centre makes it possible to miniaturise an entire measuring laboratory to the size of a small sensor. Using the technology, the Fabry project at VTT has developed smart optical measuring devices for uses that include optimisation of vehicle engines, reduction and monitoring of environmental emissions, and quality control of pharmaceuticals. Participants in the Fabry project to develop spectroscopic sensor devi
May 13, 2014 Read time: 2 mins
According to Finland’s 814 VTT Technical Research Centre of Finland, technology developed by the centre makes it possible to miniaturise an entire measuring laboratory to the size of a small sensor.

Using the technology, the Fabry project at VTT has developed Smart optical measuring devices for uses that include optimisation of vehicle engines, reduction and monitoring of environmental emissions, and quality control of pharmaceuticals.

Participants in the Fabry project to develop spectroscopic sensor devices based on novel Fabry-Perot interferometers included 260 Continental Automotive, 536 Sick, 7745 Innopharma Labs, 7746 Ocean Optics, 7747 Murata Electronics, Rikola, 7748 Okmetic and VTT Memsfab.

So far, two of the companies involved have launched new products of their own based on the project results. Rikola of Finland has developed the world’s smallest hyperspectral camera, which can be used for surveying fertilisation and irrigation needs in agricultural areas from unmanned aerial vehicles, while the Irish Innopharma Labs manufactures Eyemap cameras for the pharmaceutical industry.

VTT is also in the process of establishing a spin-off company based on the, which it expects to launch in May 2014.

“Apart from new business operations, optical measurement technology also has an impact on employment. In the long run, this could create dozens, or maybe even hundreds of new jobs in Finland,” says Jarkko Antila, senior scientist at VTT, who has been coordinating the project.

The Fabry-Perot interferometer makes use of multiple reflections between two closely spaced partially silvered surfaces. Part of the light is transmitted each time the light reaches the second surface, resulting in multiple offset beams which can interfere with each other. The large number of interfering rays produces an interferometer with extremely high resolution, somewhat like the multiple slits of a diffraction grating increase its resolution.

Related Content

  • February 4, 2019
    Finland pledges to launch autonomous technology research cluster in 2020
    Finland plans to launch next year a research cluster which the government hopes will put the country at the forefront of developments in autonomous technology. The RAAS (Research Alliance for Autonomous Systems) ‘innovation ecosystem’ is designed to bring together research organisations and other stakeholders to develop “new, cross-sector solutions”, with an emphasis on those containing a high level of automation. The Ministry of Economic Affairs and Employment has put up grant money, with research or
  • December 12, 2018
    VTT utilises 5G network to improve road safety
    VTT’s Technical Research Centre in Finland has carried out an experiment using the 5G mobile network to help improve road safety, control self-driving cars and assist road maintenance providers. The company says 5G networks and fast data transmission solutions can collect sensor, video and radar data from vehicles. Public funding agency Business Finland subsidised the VTT's 5G-Safe project. It is part of the Challenge Finland competition, an initiative which explores the use of augmented reality an
  • June 19, 2017
    VTT develops new technology for autonomous ship navigation systems
    Finland’s VTT Technical Research Centre is developing safe steering for the remote-monitored and controlled autonomous ships of the future.
  • May 18, 2017
    VTT's autonomous cars take to public roads
    The autonomous cars developed by VTT Technical Research Centre of Finland are able to exchange information with each other and their driving environment. They are able to follow a pre-programmed route and avoid collisions with sudden obstacles without input from the driver. The cars currently require the lane markings or sides of the road to be visible. However, by 2020, VTT says the cars will be driving in more demanding conditions on roads covered in gravel and snow. The autonomous cars feature a thermal