Skip to main content

Allied Vision and TORC Robotics help blind driver ‘see’

TORC Robotics has partnered with the Robotics and Mechanisms Laboratory (RoMeLa) at the Virginia Polytechnic Institute and State University (Virginia Tech) with the aim of developing vehicles for the next generation of National Federation of the Blind (NFB) Blind Driver Challenge vehicles. The NFB developed the Blind Driver Challenge which calls upon developers and innovators to create interface technologies to allow those who are blind to drive a car independently. Held at the Daytona Speedway as a pre
May 22, 2015 Read time: 3 mins
TORC Robotics has partnered with the Robotics and Mechanisms Laboratory (RoMeLa) at the Virginia Polytechnic Institute and State University (5593 Virginia Tech) with the aim of developing vehicles for the next generation of National Federation of the Blind (NFB) Blind Driver Challenge vehicles.

The NFB developed the Blind Driver Challenge which calls upon developers and innovators to create interface technologies to allow those who are blind to drive a car independently.  Held at the Daytona Speedway as a pre-race event for the annual Rolex 24 sports car endurance race, a blind driver was to independently drive the vehicle down the main straight onto the road course.  

Using a crossover SUV, TORC implemented its ByWire drive-by-wire conversion modules, SafeStop wireless emergency stop system, and PowerHub distribution modules on the vehicle.  Drive-by-wire gives a driver electronic control of a vehicle.  The premise comes from the fly-by-wire system, where an aircraft’s controls produce electronic signals which are read and put through computing systems connected to actuators that control the surfaces of the wings and tail.

Jesse Hurdus, TORC’s project manager for this event, stated, “Cars are much further behind in taking this step.  In order to have an autonomous vehicle, you need to have it so a computer can control the throttle, transmission, and braking systems.  This is drive-by-wire”.

The team also used light detection and ranging (LIDAR) which measures distance by emitting a laser pulse and analysing the reflected light to determine the obstacles a driver has to drive around.  However, LIDAR has difficulty with classifying obstacles and differentiating objects such as vegetation from other solid objects, which is where Allied Vision’s Prosilica GC1290C camera provided the solution.

TORC used the camera to help overcome the challenges LIDAR presents, by taking sensor data and feeding it into the software to provide an understanding on what is around the vehicle and detecting lane markings. The information is fed back to the autonomous system and provides input to the blind driver so that he or she can keep the vehicle centred and within the lane.  

The blind driver wears special DriveGrip gloves and sits on a SpeedStrip padded insert on the driver’s seat.  The gloves contain small vibrating motors on top of each finger which help relay steering information from the autonomous system.  The padding on the driver’s seat also contains vibrating motors stretching along the driver’s legs and back which relay the vehicle’s speed information and vibrate to tell the driver to accelerate or brake. Vibrations in the gloves to signal the direction the car needs to be turned.

While the focus of TORC’s systems was specifically for the Challenge, they can be potentially used for future solutions.  Hurdus concluded, “This was an exploratory effort to see how we could use the cameras to achieve the goal.  A person blind from birth was able to drive a vehicle outfitted with sensor technology to give him an understanding of the environment generated by a combination of Allied Vision’s cameras, LIDAR systems, and GPS localisation systems.  The fusion of all this data was able to give this person the ability to ‘see’ the environment as a person would be able to see through their own eyes.”

For more information on companies in this article

Related Content

  • Federal Highway Administration showcases truck platooning technology
    September 15, 2017
    The US Federal Highway Administration (FHWA) has conducted the first of a two-day demonstration of three-truck platoons on I-66 in Virginia. The results of a four-year research project to test the effectiveness of state-of-the-art driving and communications technologies were showcased at the event. Truck platooning uses vehicle-to-vehicle communications technology to allow trucks to follow each other more closely – at about one second apart – and travel in a more coordinated fashion.
  • Daimler unveils autonomous truck
    May 7, 2015
    Daimler Trucks launched its newly developed autonomous transport truck, the Freightliner Inspiration, at an event that turned the Hoover Dam in Nevada into a large projection screen. The Level 3 autonomous truck uses Highway Pilot sensors and hardware with cameras and radar to safely operate under a range of highway conditions, and has been granted a licence to operate in Nevada. The Freightliner Inspiration is based on the US Freightliner Cascadia model, but with the addition of the Highway Pilot techno
  • Study reveals major concerns over the security of connected cars
    March 2, 2016
    New research has revealed that half of British drivers (49 per cent) are concerned about the safety of the connected car, with automotive manufacturers also admitting there could be a security lag of up to three years before systems catch up with cyber threats. The report, commissioned by Veracode and carried out by the International Data Corporation (IDC), revealed half of drivers are concerned about the security of driver-aid applications, such as adaptive cruise control, self-parking, and collision av
  • Caltrans develops remote remedy for ailing VMS
    February 18, 2014
    A remote diagnostic system for variable message signs keeps Caltrans staff safer and makes them more efficient. District 12 of the California Department of Transportation (Caltrans) maintains roads in Orange County including 292 route miles of freeway lanes and 240 directional miles of full-time high occupancy vehicle or carpool lanes. All of these lanes are controlled from the district’s transportation management centre (TMC) using a network of 58 variable message signs (VMS) positioned alongside or abo