Skip to main content

Vitronic tests sensor tech in Hamburg

Vitronic aims to improve VRU safety using V2X on German city's real-world 'test' track
By Ben Spencer May 24, 2021 Read time: 2 mins
Victronic says a camera installed on a light pole will record the flow of traffic (image credit: Vitronic)

Vitronic has installed sensor technology in Hamburg aimed at optimising traffic flow and protecting vulnerable road users (VRUs).

The vision technology firm is using the German city's Test Track for Automated and Connected Driving (TAVF), a network of public roads containing various installations for the use of Infrastructure to Vehicle and Vehicle to Infrastructure communications.

In addition to automated and connected driving functions, it also allows manufacturers and researchers to test ITS applications, safety and assistance systems - all in a real-life traffic environment.

The city is the location of October's ITS World Congress and Vitronic plans to present the results of its work there. 

It is testing the systems at what the company calls a 'danger point', the congested traffic junction K94.

A video camera was installed on an existing light pole to record the flow of traffic coming from Schröderstiftstraße in the direction of the K94 junction (Rentzelstraße / Schröderstiftstraße / An der Verbindungsbahn).

A second camera was fitted to a pillar located directly at the K94 junction.

Both cameras record the incoming traffic from the direction of Schröderstiftstraße. The real-time data collected is available for further processing by the traffic lights control processes at the K94 junction.

The aim is to optimise traffic light control so that waiting and travel times are reduced for all road users.

For example, green phases could be extended at peak times so that an increased number of cyclists and pedestrians can cross the road safely.

Additionally, Vitronic has installed two additional sensors and a 3D radar to increase traffic safety for VRUs in the area of the K94 junction. 

In the future, collective perception messages (CPM) could be sent to vehicles passing the intersection.

This would be intended to direct the attention of drivers or (semi-) autonomous vehicles to situations detected by the sensor system that are potentially dangerous for VRUs.

Position data of all traffic objects detected by the sensors can be continuously sent via CPM. Currently, the communication between the roadside unit and the on-board unit is being tested and improved.

 

For more information on companies in this article

Related Content

  • MTA looks to Lidar and AI
    July 7, 2022
    New York's transport authority turns towards new tech to solve age-old signalling issues
  • Enforcement suppliers highlight industry best practice
    March 15, 2012
    Major suppliers of enforcement technology highlight the countries, regions or cities that they consider to be leading the way in reduction of road traffic violations. The French government’s ambitious programme of enforcing traffic law violations has proven to be an unrivalled success and is continuing to bring improvements in road safety with innovative enforcement technology.
  • Making enforcement multi-functional
    June 23, 2016
    New enforcement equipment is coming onto the market apace, as Colin Sowman discovers. If there is one word that epitomises the current trend in enforcement technology then that word is consolidation: multi-function cameras, miniaturisation and combining radar and visual detection methods. One example is Turkish company Ekin Technology’s recently introduced Micro Plate is claimed to be the smallest licence plate recognition device. In addition to logging licence plate data, the system records speed, date, ti
  • Moovit points to Beam e-bikes and scooters 
    May 26, 2021
    Sydney and Canberra projects aim to improve first-/last-mile options in Australian cities