Skip to main content

Intel outlines AV limits of perception

CES 2021: Intel boss Amnon Shashua suggests radar and Lidar as redundant add-ons
By Ben Spencer January 12, 2021 Read time: 2 mins
Shashua: 'You have to be 1,000 times better than these statistics'

What is an acceptable failure rate of a vehicle's perception system?

And how does this influence the development and regulation of autonomous vehicles (AVs)?

These were among the key areas covered by Professor Amnon Shashua, senior vice president of Intel and chief executive officer of Mobileye at this week's CES 2021 event.

In an online session, Shashua revealed the company measures failure rate in terms of hours of driving. 

“If we google, we will find out that about 3.2 trillion miles a year in the US are being travelled by cars and there are about six million crashes a year,” he said.

“So divide one by another, you get: every 500,000 miles on average there is a crash.”

“Let's assume that 50% it's your fault in a crash, so let's make this one million and let's divide this by 20 miles per hour on average, so we get about once every 50,000 hours of driving we'll have a crash,” he added. 

Shashua then applied this level of performance to a scenario involving a robotic machine and the deployment of 50,000 cars. 

“It would mean that every hour on average, will have an accident that is our fault because it’s a failure of the perception system,” he continued.

“From a business perspective this not sustainable, and from a society perspective, I don't see regulators approving something like this so you have to be 1,000 times better than these statistics.”

Mobileye is acutely aware of this, having just announced it will be testing AVs in new cities this year: Detroit, Tokyo, Shanghai, Paris and (pending regulation) New York City.

From a technological point of view, Shashua insisted it is “so crucial to do the hard work” and not combine all the sensors at the beginning and carry out a “low-level fusion – which is easy to do”.

“Forget about the radars and Lidars, solve the difficult problem of doing an end-to-end, standalone, self-contained camera-only system and then add the radars and Lidars as a redundant add-on,” he concluded. 

For more information on companies in this article

Related Content

  • Bringing the Internet of Mobility to life
    July 16, 2021
    As we chart our route to the ITS World Congress in Hamburg, a recent Ertico-ITS Europe webinar explored the future of connectivity including policy, infrastructure and security
  • Michigan moves to test self-driving cars without driver
    September 9, 2016
    Michigan would no longer require a driver to be inside a self-driving car while testing it on public roads, according to Associated Press. The legislation was passed unanimously this week by the state Senate, where backers touted the measures as necessary to keep the US auto industry's home state ahead of the curve on rapidly advancing technology.
  • Car owners fear in-car connectivity technology
    August 2, 2012
    In-car technology is revolutionising the driving experience, especially when it comes to connectivity options, including mobile device connection to the Internet, navigation systems, emergency response systems, and driving habit monitoring devices. Yet, it is claimed that more than three in four car owners (76 per cent) report that they believe in-car connectivity technologies are too distracting and even dangerous to have. In addition, more than half (55 per cent) argue that automakers have taken technolog
  • Norway gets ready for more EVs
    September 14, 2021
    Norway’s road transport network is changing radically. The country is gearing up for greater electric vehicle use as well as gradually phasing out its traditional ferry links