Skip to main content

CMOS cameras used to create video pedestrian crossing

The city of Cologne, Germany has installed two CMOS-camera based video pedestrian light systems that will recognise waiting pedestrians and extend the green phase if there are still people crossing after the standard time allocation. The system, implemented by Siemens, uses two Flir cameras. The safe walk camera observes the waiting area. A stereo camera with two CMOS 1/3-inch mono sensors and 3 mm lenses is mounted 3.5 metres above the ground to cover an area of 12 sq m. This camera is set to recognise on
June 11, 2013 Read time: 2 mins
The city of Cologne, Germany has installed two CMOS-camera based video pedestrian light systems that will recognise waiting pedestrians and extend the green phase if there are still people crossing after the standard time allocation.

The system, implemented by 189 Siemens, uses two 6778 FLIR cameras. The safe walk camera observes the waiting area.  A stereo camera with two CMOS 1/3-inch mono sensors and 3 mm lenses is mounted 3.5 metres above the ground to cover an area of 12 sq m. This camera is set to recognise only objects with a height above 50 cm in order to eliminate shading and other distractions on the pavement.

C-walk – the second video system – uses a colour CMOS camera and recognises when not all pedestrians can cross in the minimum green period and sends a signal to the Siemens control unit in order to extend the green phase.

According to an article in Novus Light, the algorithms of the system also recognise the moving direction of pedestrians and can recognise those who only pass through the detection area. In this way, only people waiting at the light trigger a signal to the control unit of the pedestrian light, which, depending on the programming, starts a green phase at certain points in the current phase.

Dr Christoph Roth, product manager in the Road and City Mobility department at the Siemens Infrastructure and Cities Sector, says CMOS sensors were chosen because in traffic detection applications, they deliver more reliable images than CCD sensors and have a higher resistance to blooming from auto headlights at night.

For more information on companies in this article

Related Content

  • Toyota proving ground tests co-operative ITS
    February 25, 2013
    Opened in November 2012, Toyota’s intelligent transportation systems (ITS) proving ground is being used to run a number of interactive tests between specially-equipped Toyota vehicles. Located at the company's Higashi-Fuji Technical Centre in Susono City, Japan, the ITS proving ground is a 3.5-hectare site that faithfully replicates a real urban environment, complete with intersecting streets, pedestrian crosswalks, and traffic signals. It is equipped with optical beacons, government-allocated 760 MHz trans
  • US study finds cameras reduce red light running
    January 28, 2013
    The latest research by the US Insurance Institute for Highway Safety (IIHS) found that red light running rates declined at Arlington, Virginia, intersections equipped with cameras. The decreases were particularly large for the most dangerous violations, those happening 1.5 seconds or longer after the light turned red. "This study provides fresh evidence that automated enforcement can get drivers to modify their behaviour," says Anne McCartt, senior vice president for research at IIHS and the study's lead au
  • Flir online training in September
    September 12, 2016
    Flir’s traffic webinars during September provide an introduction to the TrafiOne smart city sensor for traffic monitoring and dynamic traffic signal control. TrafiOne uses thermal imaging to detect the presence of pedestrians and cyclists that are approaching and waiting at the kerb or using the crossing. What’s new in FLUX 3.0 looks at the new features of this video management system, which collects traffic data, events, alarms and video images created by a wide variety of video detection modules. Th
  • On Semiconducter integrates image capture and depth mapping
    June 26, 2018
    On Semiconductor has released a new 1/3.2-inch backside illuminated (BSI) 4 megapixel (MP) CMOS digital image sensor which integrates delivery of image capture and depth mapping from a single sensor solution. Called AR0430, it is said to deliver 120 frames per second (fps) performance supporting slow-motion video in 4 MP mode. The sensor can be used in Internet of Things (IoT) applications including wearable devices, AR/VR products and security cameras. The sensor’s techniques, Colour Filter Array (CFA) an