Skip to main content

Austrian Bike2CAV V2X project could mark turning point in cyclist safety

Research in Salzburg into C-ITS equips bikes with V2X tech to allow detection via ITS-G5
By Adam Hill May 10, 2023 Read time: 4 mins
V2X tech brings the possibility of making things safer for vulnerable road users (© Salzburg Research | Wildbild)

A project in Austria aims to show that there will be fewer collisions between vehicles and cyclists if cooperative intelligent traffic system (C-ITS) technology is rolled out.

The Bike2CAV initiative, which ran for nearly three years until 30 April 2023, tested a method for the cooperative detection of collision risks and developed warning concepts for cyclists during a pilot in Salzburg.

ITS-G5, bicycle localisation, cameras and Lidar sensors and roadside sensors with cameras were used, and Austrian and German researchers say the scheme validated wireless communication channels between different vehicles, bicycles and the infrastructure under real conditions for the first time - in three scenarios at two test intersections in rural and urban areas.

A networked, automated vehicle and a new type of networked research bicycle were used in the experiments at the test intersections of Weiserstraße/Gabelsbergerstraße in Salzburg - equipped with smart sensors - and on the B158 in the Salzburg municipality of Koppl.

The research consortium was made up of Salzburg Research Forschungsgesellschaft (project management); AIT - Austrian Institute of Technology, Center for Vision, Automation & Control; University of Salzburg, Department for Geoinformatics; Kapsch TrafficCom; Bike Citizens Mobile Solutions; Boréal Bikes; and KFV - Board of Trustees for road safety.

Testing different data processing methods

Different data processing methods were tested, from the self-localisation and detection of road users, to the recognition of collision risks and the generation and transmission of warning messages, to communication with cyclists and other road users.

“An important finding was that cyclists often use the infrastructure at the urban junction under investigation differently than intended," says Martin Loidl from the University of Salzburg. "This is probably due to the fact that the planning primarily follows the needs of motor vehicle traffic."

In addition to two GNSS receivers built into the Holoscene bike, the accuracy of a smartphone and a high-precision sensor mounted on the helmet were also looked at. The goal was a deviation of less than 50cm with 99.9% reliability.

In 2015, Statistics Austria recorded 6,901 traffic accidents involving bicycles - but in 2021 there were 9,578, with between 32 and 50 cyclists killed each year during this period.

The crashes involving other vehicles mostly occurred when they were turning off at an intersection, with the bicycle mostly going straight ahead.

“In addition, there is a large number of near misses that do not appear in any accident statistics," says project manager Cornelia Zankl from Salzburg Research.

"Therefore, we wanted to use our research work to make these risks easier to assess so that measures can be taken before anything happens."

The desired localisation accuracy was "very challenging" due to dense development and a railway underpass, Zankl says. Researchers found a lateral deviation of 0.5m with 95% reliability in the rural environment, with less than 2m and 95% reliability in the built-up area.

Active detection via ITS-G5

Equipping bicycles with V2X technology allows automated vehicles to have active detection via ITS-G5 in addition to passive detection via environmental sensors.

"Bikes like this are not yet available on the market, but a proof-of-concept prototype was tested in the project," says Louis P. Huard, CEO of Boréal Bikes.

“Our camera-based AI detection system used to recognise and classify motor vehicles and pedestrians has been expanded and optimised to recognise cyclists," says Alexander Paier from Kapsch TrafficCom.

"In addition, the draft of the message format collective perception message for the transmission of information from detected road users was successfully tested for V2X communication."

"The visual determination of body posture and hand signal recognition are particularly important for reliable movement prediction," says Martin Fletzer from AIT - Austrian Institute of Technology.

Different warning modes - acoustic, visual and tactile warning signals - were designed and tested using a navigation app on the smartphone, vibration on the handlebars and acoustic signals in the helmet. "The cyclists found auditory warnings to be particularly helpful, especially in situations where a vehicle is approaching from behind," says Zankl.

While the tests were successful, further development is needed, she insists. "In summary, we can confirm that collision risks can be detected cooperatively with the chosen approach. However, the connection of different data sources and the processing of the large amounts of data was still very complex."

The Road Safety Board (KFV) examined whether the cooperatively recognized situations were actually risky for cyclists and whether they were effectively warned of a risk. “During the field test, we managed to generate a good selection of typical high-risk situations for cyclists. In 27 of the 30 trips, a warning of a situation that was actually dangerous for cyclists was sent to the road users involved," attests Hatun Atasayar, safety expert at KFV.

The research was sponsored by the Federal Ministry for Climate Protection, Environment, Energy, Mobility, Innovation and Technology.

For more information on companies in this article

Related Content

  • Kapsch demonstrates smart parking, V2X solutions
    July 31, 2015
    Expanding its range of offerings from the highway into the city, at this year’s ITS World Congress in Bordeaux Kapsch will show how cutting-edge real-time smart parking applications, smart data and advanced analytics can answer not only mobility issues but can encourage the economic and environmental vitality of a city. To respond to the rising demand for connectivity and better traffic management, Kapsch will also highlight its V2X application and its integrated traffic management solutions. Recently the c
  • Econolite shares tips to get C/AV-ready
    August 24, 2022
    As more tech-based ATMS and sensors come online, how do we make these technologies functional and practical in existing infrastructure - particularly for data-hungry C/AV systems? Sunny Chakravarty and Dustin DeVoe of Econolite have some ideas
  • Copenhagen to showcase ITS in action at ITSWC 2018
    December 18, 2017
    As delegates head for the 2017 ITS World Congress in Montreal, we talk to Copenhagen mayor Morten Kabell about why his city is the ideal location for next year’s event. It may have been a long time coming but the ITS World Congress will be in Copenhagen in 2018 and there can be few more fitting places to host the event. By any number of metrics - interconnected transport, cycle commuting, safer streets, reduced pollution, sustainable energy and quality of life - the Danish capital has implemented what m
  • Positive incentives an alternative to road user charging?
    February 1, 2012
    The Netherlands has been looking at incentivising rush-hour avoidance. The intention is to better understand road users' motivations and find alternatives to congestion charging. Something significant needs to happen if we are to adequately address the traffic congestion and other issues caused by the ever-rising numbers of vehicles on our roads. Congestion or distance-based charging is seen as one way of managing demand and raising revenue for improvements to transport infrastructure. However, charging is