Skip to main content

Creating safer roads with vehicle communication

Accurate, timely information which eliminates the need to brake quickly when approaching a work zone or other road hazard could prevent crashes and save lives, according to research by the University of Minnesota. Thanks to research by the University of Minnesota, this vision is closer than ever to reality. “In the past fifty years we’ve made great strides in reducing traffic fatalities with technologies that save lives in crashes, like airbags and seat belts,” says M. Imram Hayee, electrical and computer e
March 26, 2013 Read time: 3 mins
Accurate, timely information which eliminates the need to brake quickly when approaching a work zone or other road hazard could prevent crashes and save lives, according to research by the 584 University of Minnesota.

Thanks to research by the University of Minnesota, this vision is closer than ever to reality. “In the past fifty years we’ve made great strides in reducing traffic fatalities with technologies that save lives in crashes, like airbags and seat belts,” says M. Imram Hayee, electrical and computer engineering professor at the U of M Duluth. “The next wave of lifesaving technologies is what we’re focusing on with this research, technologies that prevent crashes from occurring in the first place.”

Electrical and computer engineering professor M. Imram Hayee and research assistant Umair Ibrahim examined how dedicated short-range communication (DSRC) can allow vehicles to communicate critical safety information about work zone operations to both each other and to roadway infrastructure such as portable changeable message signs.

Researchers developed and successfully field-tested a hybrid traffic information system that allows the traffic data being transmitted by vehicles with DSRC to be received seamlessly and securely by portable changeable message signs placed along the roadside.

“We designed a fully portable traffic information system that can be placed on any road to monitor the congestion build-up around a work zone or display advisory messages to drivers,” Hayee explains.

This information can also be communicated to other vehicles in the vicinity and to permanent roadway infrastructure equipped with DSRC technology. Further analysis indicated that just twenty to thirty-five per cent of vehicles need to be equipped with DSRC for the system to work reliably.

Currently, a diverse group of stakeholders, including vehicle manufacturers, highway safety groups, and government organisations, is working on developing and researching DSRC technology for US vehicles. However, even after adoption of DSRC begins, it will be a long time before it is available in most vehicles, which is why this research is important.

“If we want to reap the maximum safety benefits in the early stages of DSRC adoption, we’ll need an effective way to get the valuable information being transmitted by the DSRC-equipped vehicles to drivers that don’t yet have access to this technology,” Hayee says.

Related Content

  • US IntelliDrive cooperative infrastructure programme
    February 2, 2012
    The 'rebranding' of the US's Vehicle-Infrastructure Integration programme as IntelliDrive marks an effort to make the whole undertaking more accessible both in terms of nomenclature and technology. Shelley Row, director of the ITS Joint Program Office within USDOT's Research and Innovative Technology Administration, talks about the changes
  • ITS needs to talk the talk as well as walk the walk
    March 24, 2014
    The US automated enforcement market is in rude health as the number of systems and applications continues to grow and broaden. Jason Barnes reports. Blessed and cursed – arguably, in equal measure – with a constitution which stresses the right to self-expression and determination, the US has had a harder journey than most to the more widespread use of automated traffic enforcement systems. In some cases, opposition to the concept has been extreme – including the murder of a roadside civil enforcement offici
  • Drive C2X tests ITS systems in Finland’s demanding weather conditions
    December 17, 2013
    The VTT Technical Research Centre in Finland is involved in an extensive international Drive C2X project that tests and develops intelligent transport solutions, aimed at improving safety and efficiency in road traffic and reducing the carbon footprint of motoring. The project includes large-scale testing of inter-vehicle communication and communication between vehicles and the roadside infrastructure system. The tests are being carried out using cars from Mercedes-Benz, Opel and Volvo in slippery and deman
  • Connected Vehicles test vehicle to vehicle applications
    January 19, 2012
    In the US, the ITS Joint Program Office is about to conduct a series of Driver Clinics intended to gauge public reaction to Connected Vehicle safety technologies and applications. Starting in August, the US Department of Transportation (USDOT) will test Vehicle-to-Vehicle (V2V) applications with everyday drivers in what it describes as 'normal operational scenarios'. These Driver Clinics are being carried out at six locations across the US and together with the subsequent model deployment beginning in 2012,