Skip to main content

Toshiba upgrades solid-state Lidar

Toshiba's Lidar operates in a variety of lighting and weather conditions to 200m
By Ben Spencer July 6, 2021 Read time: 2 mins
Toshiba says its Lidar can monitor snow cover or objects in the road (© Oskari Porkka | Dreamstime.com)

Toshiba has upgraded its solid-state Lidar which it says maintains a maximum detection range of 200m and will advance progress in autonomous driving. 

The company is expanding the application to monitor transportation infrastructure, in such areas as early detection of road subsidence or landslides, snow cover or falls of objects onto roads.

Akihide Sai, senior research scientist at Toshiba’s corporate research & development centre, says: “We have secured technologies essential for a compact, high-resolution, long-range solid-state Lidar that is robust and simple to install."

"We anticipate demand for such a versatile technology in both the autonomous driving and transportation infrastructure monitoring markets.”

Current monitoring of transportation infrastructure relies on cameras, but Toshiba points out their performance is degraded by low light and bad weather.

The new Lidar is expected to realise clear, long-distance, robust 3D scanning and object detection in a variety of lighting and weather conditions. 

Toshiba achieved a compact Lidar through upgrades to its silicon photo-multiplier (SiPM), a light-receiving chip that consists of light-receiving cells controlled by transistors. 

The new chip has a smaller transistor module, and eliminates the buffer layer that protected the transistors with newly developed insulating trenches between the transistors and the light-receiving cells, the firm adds. 

The potential issue of low light-sensitivity from using smaller transistors was solved with the addition of a high-withstand voltage section to raise the voltage input to the light-receiving cell. 

According to Toshiba, these innovations have reduced the size of the SiPM by 75% while enhancing its light sensitivity by 50% against the July 2020 previous model.

More SiPM can now be arrayed in the same package, which the company insists boosts resolution to 1,200 x 80 pixels, a four-times improvement.

Toshiba is to continue to support safer transportation by promoting its LiDAR technologies for autonomous driving and transportation infrastructure monitoring. Continued R&D is expected to further advance the Lidar’s detection range and image resolution. 

For more information on companies in this article

Related Content

  • Options abound for road weather sensing
    September 6, 2017
    Meteorological organisations invest millions in super-computers to crunch data for ever-more accurate forecasts but inherent unpredictability means that other methods of alerting drivers and road authorities to fast-changing weather and highway conditions are essential. For years, static weather sensors to measure factors such as surface water, ice or high roadway temperatures have been embedded in highways to provide such data. But that is changing.
  • QRO’s Harrier ANPR cameras set a new benchmark
    July 28, 2025

    QRO Solutions will be in Atlanta to demonstrate how it is redefining the landscape of automatic number plate recognition (ANPR) with its compact yet powerful Harrier Mini and Harrier AI Fixed cameras. Engineered to deliver outstanding accuracy and performance, these devices offer exceptional detection and recognition capabilities across a wide range of number plate types and styles, raising the bar for industry performance.

  • Synthetic data v the real thing
    January 9, 2023
    ITS and smart cities thrive on data: but does all the data need to be real? Steve Harris of Mindtech explains why the answer could lie in combining elements of the real world with the synthetic
  • Historic milestone for EVs claimed
    April 17, 2012
    Utah State University Research Foundation's Energy Dynamics Laboratory has announced that it has operated the first high-power, high-efficiency wireless power transfer system capable of transferring enough energy to quickly charge an electric vehicle. The lightweight, low-profile system demonstrated 90 per cent electrical transfer efficiency of five kilowatts over an air gap of 10 inches. The demonstration at EDL's North Logan, Utah, facility further validates that electric vehicles can efficiently be charg