Skip to main content

Toshiba upgrades solid-state Lidar

Toshiba's Lidar operates in a variety of lighting and weather conditions to 200m
By Ben Spencer July 6, 2021 Read time: 2 mins
Toshiba says its Lidar can monitor snow cover or objects in the road (© Oskari Porkka | Dreamstime.com)

Toshiba has upgraded its solid-state Lidar which it says maintains a maximum detection range of 200m and will advance progress in autonomous driving. 

The company is expanding the application to monitor transportation infrastructure, in such areas as early detection of road subsidence or landslides, snow cover or falls of objects onto roads.

Akihide Sai, senior research scientist at Toshiba’s corporate research & development centre, says: “We have secured technologies essential for a compact, high-resolution, long-range solid-state Lidar that is robust and simple to install."

"We anticipate demand for such a versatile technology in both the autonomous driving and transportation infrastructure monitoring markets.”

Current monitoring of transportation infrastructure relies on cameras, but Toshiba points out their performance is degraded by low light and bad weather.

The new Lidar is expected to realise clear, long-distance, robust 3D scanning and object detection in a variety of lighting and weather conditions. 

Toshiba achieved a compact Lidar through upgrades to its silicon photo-multiplier (SiPM), a light-receiving chip that consists of light-receiving cells controlled by transistors. 

The new chip has a smaller transistor module, and eliminates the buffer layer that protected the transistors with newly developed insulating trenches between the transistors and the light-receiving cells, the firm adds. 

The potential issue of low light-sensitivity from using smaller transistors was solved with the addition of a high-withstand voltage section to raise the voltage input to the light-receiving cell. 

According to Toshiba, these innovations have reduced the size of the SiPM by 75% while enhancing its light sensitivity by 50% against the July 2020 previous model.

More SiPM can now be arrayed in the same package, which the company insists boosts resolution to 1,200 x 80 pixels, a four-times improvement.

Toshiba is to continue to support safer transportation by promoting its LiDAR technologies for autonomous driving and transportation infrastructure monitoring. Continued R&D is expected to further advance the Lidar’s detection range and image resolution. 

For more information on companies in this article

Related Content

  • Point Grey’s latest Blackfly features Sharp CCD
    May 11, 2015
    The latest addition to the Point Grey camera range is the new 5.0 megapixel Sharp CCD model to its Blackfly family of GigE Vision cameras. The BFLY-PGE-50H5 camera models are based on the Sharp RJ32S4AA0DT mono and RJ32S3AA0DT colour sensors, a 2/3"-inch global shutter CCD.
  • Transport is evolving – and road safety must keep pace, says Parifex
    May 25, 2023
    France-headquartered Parifex works at the cutting edge of Lidar-based speed control systems. CEO Paul-Henri Renard discusses safety advances made in recent decades - and the causes of accidents that remain…
  • Traffic management: risky business
    June 15, 2023
    Adding a real-time accident risk layer to the profile of a road network ticks all the crucial boxes: it saves time, fuel, money and, ultimately, lives. Harriet King of Valerann explains the brain power of Lanternn by Valerann’s Core Fusion Engine...
  • Long-range electric vehicles ‘set to gain popularity globally’
    April 22, 2015
    According to new analysis from Frost & Sullivan, the global electric vehicles (EV) market has made huge progress, with more than 55 models now available globally. Currently, over 70 per cent of the models on the market are battery EVs (BEVs) and approximately 25 per cent are plug-in hybrid EVs (PHEVs). Nevertheless, the number of PHEVs is likely to increase over the next three to four years. The market will see greater demand for longer-range vehicles that allow customers to drive up to and past the pure EV