Skip to main content

Toshiba upgrades solid-state Lidar

Toshiba's Lidar operates in a variety of lighting and weather conditions to 200m
By Ben Spencer July 6, 2021 Read time: 2 mins
Toshiba says its Lidar can monitor snow cover or objects in the road (© Oskari Porkka | Dreamstime.com)

Toshiba has upgraded its solid-state Lidar which it says maintains a maximum detection range of 200m and will advance progress in autonomous driving. 

The company is expanding the application to monitor transportation infrastructure, in such areas as early detection of road subsidence or landslides, snow cover or falls of objects onto roads.

Akihide Sai, senior research scientist at Toshiba’s corporate research & development centre, says: “We have secured technologies essential for a compact, high-resolution, long-range solid-state Lidar that is robust and simple to install."

"We anticipate demand for such a versatile technology in both the autonomous driving and transportation infrastructure monitoring markets.”

Current monitoring of transportation infrastructure relies on cameras, but Toshiba points out their performance is degraded by low light and bad weather.

The new Lidar is expected to realise clear, long-distance, robust 3D scanning and object detection in a variety of lighting and weather conditions. 

Toshiba achieved a compact Lidar through upgrades to its silicon photo-multiplier (SiPM), a light-receiving chip that consists of light-receiving cells controlled by transistors. 

The new chip has a smaller transistor module, and eliminates the buffer layer that protected the transistors with newly developed insulating trenches between the transistors and the light-receiving cells, the firm adds. 

The potential issue of low light-sensitivity from using smaller transistors was solved with the addition of a high-withstand voltage section to raise the voltage input to the light-receiving cell. 

According to Toshiba, these innovations have reduced the size of the SiPM by 75% while enhancing its light sensitivity by 50% against the July 2020 previous model.

More SiPM can now be arrayed in the same package, which the company insists boosts resolution to 1,200 x 80 pixels, a four-times improvement.

Toshiba is to continue to support safer transportation by promoting its LiDAR technologies for autonomous driving and transportation infrastructure monitoring. Continued R&D is expected to further advance the Lidar’s detection range and image resolution. 

For more information on companies in this article

Related Content

  • Helius and Sora lidar units on show
    September 15, 2021
    US-headquartered Cepton Technologies will be showing lidar units – the Helius and the Sora Series
  • EDI ushers in new safety era
    April 26, 2023
    Traffic control has evolved dramatically over the past century, and it’s reinventing itself once again as cities become more connected while environmental sustainability, multimodal transportation, autonomous vehicles and Big Data take hold.
  • Daimler’s double take sees machine vision move in-vehicle
    December 13, 2013
    Jason Barnes looks at Daimler’s Intelligent Drive programme to consider how machine vision has advanced the state of the art of vision-based in-vehicle systems. Traditionally, radar was the in-vehicle Driver Assistance System (DAS) technology of choice, particularly for applications such as adaptive cruise control and pre-crash warning generation. Although vision-based technology has made greater inroads more recently, it is not a case of ‘one sensor wins’. Radar and vision are complementary and redundancy
  • Driver aids make inroads on improving safety
    November 12, 2015
    In-vehicle anti-collision systems continue to evolve and could eliminate some incidents altogether. John Kendall rounds up the current developments. A few weeks ago, I watched a driver reverse a car from a parking bay at right angles to the road, straight into a car driving along the road. The accident happened at walking pace, no-one was hurt and both cars had body panels that regain their shape after a low speed shunt.